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% CHAPTER 1 1

Introduction

1.1. Rationale.

In many areas of cammunication engineering, such as radio and

|
1 &3 N
R

j , television broadcasting and satellite commmications, one is con-

cerned with the transmission of several signals (functions) through

i)

a "channel." Since it is inefficient to transmit one signal at a

A

Ty e

time over the channel, it is natural to ask if it is possible to
"reconstruct" a continuous-time signal from its samples under cer-
tain conditions on the signal and the sampling scheme. If the answer
is in the affimmative, one may transmit only the samples of the
signal, thus occupying the channel only at the instants of sampling.

; , Between these instants the samples of other signals can be transmitted.
Another interesting application of ''sampling'" is in the field of

sound recording (see, e.g., Vitushkin, 1974). The most widely used 1

; technique is the analogue method where the signal is recorded without

{ any preceding transformations. However, the signals recorded by this
method suffer distortion due to the defects of recording and repro-
fj* ] duction devices. A more promising method of recording is called the

digital recording technique. By this method, the signal is first

transformed into a discrete code. In other words, the signal is
sampled and the samples are coded; then the code of the signal is

. recorded, and finally the discrete code is read off the recording and
is transformed into its continuous-time form in order to reproduce

a8 the signal. More precisely, the signal is reconstructed from the




A

e

(decoded) samples read off the recording. This technique has been
recently employed with remarkable results.

Clearly, sampling representations and approximations are very
significant in communication and information theory, especially in

the era of digital computers.

1.2. Sampling Representations.

The sampling representation (expansion, theorem)

[ . Wt -
1.2.1) £(t) = ¥ f(zlwfl;‘(gwi_:“ , teR!,
n=-o

was originated by E.T. Whittaker (1915). J.M. Whittaker (1929, 1935),
Kotelnikov (1933), Shannon (1949), and others have studied extensively
the sampling theorem and its extensions in developing commmication
and information theory. For a review of the sampling theorem, see
Jerri (1977).

A function f which can be represented, for some W, > 0, by

0
W

(1.2.2) £(t) = "Mty | rem] ,
-wo

is called Ll-bandlimited to WO if FeLl[-Wb,Wol, and is called conven-
tionally or Lz-bandlimited to WO if FeLZ[-W ,WO]. In both cases the
sampling representation (1.2.1) is valid for all W 2 wo. The series
in (1.2.1) cawverges uniformly on compact sets for Ll-bandlimited
functions, and for conventionally bandlimited functions it converges
in LA (RY) as well as wniformly on R 1.

In reconstructing a function (signal) f from a periodic set of

samples (sampling at a constant rate), errors of the following types

may arise:




(1) f is bandlimited but it is observed only over a finite
interval, and hence only a finite number of samples can be used for
its reconstruction. This type of error is called a truncation error.

(2) f is bandlimited, but there are observation errors, so
that the observed samples are not f(ﬁ%p but f(iﬁﬂ * € where {en}
are random variables.

(3) f is not bandlimited (or not bandlimited to the frequency
it is sampled at), and yet a reconstruction of the type of the

sampling theorem is attempted.

1.3. Summary.

In this study the samples are assumed to be error free, and only
errors of type (1) and (3) (possibly combined) are considered. Further-
more, the area of inquiry is limited to constant rate (or uniform)
sampling schemes. It should be mentioned, though, that non-uniform
sampling schemes, as well as random sampling schemes, are of consider-
able interest in communication and information processing.

Chapter II deals with sampling approximations as well as error
estimates of functions and stochastic processes which are not band-
limited. In Section 2.2 a sampling approximation is derived for
processes which are not necessarily weakly stationary. In Section 2.3
the rate of convergence in the finite sampling approximation for time
limited processes is estimated; the convergence holds both in the
mean square sense and with probability one. Finite sampling approxima-
tions for functions which are Fourier transforms of finite measures
are derived in Section 2.4, along with error estimates under various

conditions. These results are then extended to various types of




stochastic processes. In Section 2.5 Walsh functions are used to
derive sampling approximations for functions which are not necessarily
continuous and for processes which are not necessarily mean square
continuous, as well as error estimates under further conditions.

In Chapter III we turn to the problem of sampling expansions of
bounded linear operators acting on various classes of bandlimited
functions and stochastic processes. The merit of these representations

lies in the fact that the image of a function under the operator is

expressed or represented in terms of the samples of the function
rather than the samples of its image. Section 3.2 deals with bounded
] linear operators acting on classes of functions bandlimited in the sense
of Zakai (1965) and of Lee (1976a), and Section 3.3 considers bounded
linear operators acting on classes of functions with wandering spectra
in Lloyd's sense (Lloyd, 1959).

Finally, in Chapter IV, distributions and random distributions are
, considered. Section 4.3 deals with sampling representations for dis-
tributions with compact spectra and shows that a distribution with
compact spectrum can be reconstructed using samples of its Fourier
transform (regarded as a function). In Section 4.4 similar results

are derived for certain types of random distributions.

1.4. Notation.

The n-dimensional Euclidean space is denoted by R", n> 1,

. and the complex numbers by €. The class of all absolutely integrable
Py or square integrable functions on IRn, with respect to the measure u

A is deno’ed by Ll(u) or Lz(u), and when the measure is Lebesgue

k measure by Ll(an) or LZ(]Rn). The complement of a set A is denoted
by AS. Finally, the symbol [ is used to signal the end of each proof.
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CHAPTER 11

Sampling Approximation for Non-Bandlimited

v

- Functions and Processes

o 2.1. Introduction.

In this chapter we consider the problem of deriving sampling
approximations and their rate of convergence for functions and stoch-
4 ’ astic processes which are not necessarily bandlimited. The merit of

these approximations lies in the fact that in many practical engin-

eering systems, such as causal systems and time-limited systems, the
signals under consideration are not bandlimited. It is thus of
; . interest to consider non-bandlimited signals.

In Section 2.2 we derive a sampling approximation for stochastic
processes which are not necessarily stationary or bandlimited.
Section 2.3 deals with the rate of convergence in the finite sampling
approximation for time-limited stochastic processes. In Section 2.4
Z a finite sampling approximation is derived for functions which are
| the Fourier transforms of finite signed measures, as well as the rate
ﬁ of convergence. This result is extended to weakly stationary,
; W hammonizable, and certain stable processes. In Section 2.5 a sampling
approximation using Walsh functions is derived for functions which are

not necessarily continuous and for processes which are not necessarily

mean-square continuous.
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2.2. Sampling Approximations for Non-Stationary Stochastic Processes.

In this section we prove the stochastic process analogue of the
sampling approximation theorem proved for (deterministic) non-band-
limited functions of one variable by Brown (1967). The n-variable
version of Brown's result is stated below as Theorem 2.2.1 .

For fixed telR' and W > 0, denote by evz\,1I1tu the 2W-periodic

2ritu

extension of the function e , “W<u< W, to the real line. Its

Fourier series is given in the following well known result.

Lemma 2.2.1. For any fixed teR} and W > 0

. N
- ©  migzu .
2ritu _ e W 512 T iWﬁ N (ae. (u)

and the Fourier series converges boundedly.

Theorem 2.2.1. (Brown,1967). If FeLI(R™), and £(t) =

2mitu n
Il{HF(u)e du (u), telR", where tu = tju +...+tu , and

dun(u) = dul...dun, then for each teRR™ and W > 0,

© k k y n sin w(2Wt.-k.)
£y (t): = ) f[z% 7%}]11 TUOWE =
Kysen e sky=-e j=1 i3
n
_ 2mit
—n{new YR (u)du (u)
2mitu n 2mit.u.
where ey = ey )] , and

j=1

|£(t) - £,(t)] < 2" |F|ldu
W A{(W) n
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where A(W) = {ueR™: lujl > W; j=1,2,...,n}. ‘lhus for each tean,
f(t) = 1im fw(t) .
. W

If, in addition, for some W > 0, F(u) = 0 for almost all ueIR" with

lujl > W, j=1,2,...,n, then we have the classical sampling expansion

f(t) = f,(t) .

The following will be needed in stating the stochastic process
analogue of Theorem (2.2.1). Let {x(t), te]Rl} be a second order
mean square continuous stochastic process with correlation function
R(t,s) = E[x(t)X(s)]. Assume that ReL!(R%) and R (+) & R(t,*)el!(RY).

The Fourier transform of R is denoted by
R(u,v) = I/ R(t,s)e-zm(twsv)dtds ) u,\re]R1 .

Since R is continuous and Lebesgue integrable on IR2 it is also

Riemann integrable on ]RZ, and thus the quadratic mean integral
y) = R [ x(t)e ™%t | uem?!,

exists and defines a mean square continuous stochastic process (since

E[y(wWy(v)] = ﬁ(u,-v) is continuous in both u and v). Since RteLl(lRl)

for all telRl, its Fourier transform

ﬁt(v) 4 f Rt(s)e-znisvds , veR} ,

is well defined for all teR!. In fact, ﬁt(v) = E[x(t)y(-v)] for all

t,VeIRl, and since both x(t) and y(v) are mean square continuous, then
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ﬁt(v) is continuous in both t,v. Now we also assume that ﬁeLl(IRz),
and ﬁ(-,v)eLl(]Rl) for all Ve]Rl. Since ﬁt(v) is continuous in both

t and v, it follows that
R.(v) = [ Ru,ve™ gy |
for all t,VeIRl. Hence
f Iﬁt(v)ldul(v) < [f |ﬁ(u,v)|dudv <o

for every telRl, i.e. Rt(v) is a continuous function in both t,v, and

is integrable with respect to v for every telRl.

Remark. It should be noted that if ReLl(IRZ) and R(t,s) = 0 for

all t,se]Rl, then the condition RteLl(]Rl) is satisfied for all te]Rl.

Indeed, the two conditions, ReLl(IRZ) and R is continuous on]RZ,
imply that the Riemann integral Rf/R(t,s) exists and is finite. It
follows that the Riemann mean integral RSE[E+X(s)]ds exists and is
finite, and

E[(g*R[x(s)ds] = RfE[£-X(s)]ds .
Taking £ = x(t) gives that for each teIRl, the Riemann integral
R[R(t,s)ds exists and is finite. Since R(t,-) = 0 for all teR},
it follows that the integral exists as a Lebesgue integral as well,
i.e.

JIR(t,s)|ds < = for all teR? .

We now establish the analogue of Brown's result (Theorem 2.2.1)

g XA -w-r*':

Ahrdn o

for a non-stationary (non-bandlimited) second order stochastic process.
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Theorem 2.2.2. Let {x(t), te]Rl} be a second order mean square

continuous stochastic process with correlation function R. Assume
1 and Rell(m3),
1

that ReLY(RD), R(t,*)el}(RY) for all teR
ﬁ(-,v)eLl(lRl) for all VeIRl. Then for each fixed teR

(2.2.1) xg(0): = [ x(RS (D) o pf ofT y(u)du

n=-e

and W > 0,

where the equality is a.s., the series converges in quadratic mean,

and y(u) is defined by the quadratic mean integral

y(u) = Rf e-ZHitux(t)dt , uer? .

Also for each teRY and W > 0, the error

2 2 ~
2.2.2) (t): = E|x(t)-x,(t < 4 R(u,v)|du dv ,
( e |x(t) -x,y(t) | Mgw Miwl (u,v) [du dv

and thus for each te]Rl,

(2.2.3) x(t) = 1im xw(t)
Wooo

is quadratic mean. If, in addition, ﬁ(u,v) = 0 for almost all
|ul, |v| > W, for some W > 0, then x(t) = x(t), which is the classi-

cal sampling theorem for non-stationary bandlimited processes.

Proof. Let us denote 51—:—(%%521 by gn(t;W). It has already

been noted that the quadratic mean integral y(u) defines a mean
square continuous stochastic process with correlation function
Ely(uw),y(v)] = R(u,-v). Also, the quadratic mean integral

Rfevzlmtuy(u)du , telRl, exists since the integral
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J] oMt & F Yy (wy(v) Jdu dv

exists (and is finite) as a Riemann and as a Lebesgue integral (for

R(y,v) is continuous and Lebesgue integrable on HRZ). Let

2 N o n 2mity 2
en(t;W): Elnz_N x(zpen(tiW) - Rf e y(u)dul

N N
RGw » 5 t; t;
11 RGR S e (tMay(tW)

N :
- 1 g (W) Rf e P [x () +F(u) ldu

n=-N

N .
- L g0 R o BRG]
n=—
(2.2.4) + E|R[ e2™ ™My (u)au|? .

We notice that

EIRf ey My (wdul?

Rff eéﬁitu eéritv R(u,v) du dv .

Since R is continuous and Lebesgue integrable, then by Theorem (2.2.1)

N N

I 1 R e, (tme (tW—> [f 2 MMy vydu av |
=-N m=-N N

A
Since R n 1s continuous and integrable, we have

w

N .
) gn(t0RS &M Elxpy (v 1av
n=-

N ] -2mity
= 1 g (t;Wfe R (-V)dv
™

n=-N




11

A

N mig ,
=/l Ne1le ug,,(t;wne‘f,““" R(u,v)du dv

: —> [f &&MW 2T Riy,v)du av

where we used Lemma (2.2.1) and the dominated convergence theorem.

Similarly the same is true for the third term in expression (2.2.4),
1

and thus eﬁ(t;W) + 0 as N + » for all teIR™, W > 0, proving (2.2.1).

To prove (2.2.2), we have

e2(t) = Elx(t) - R 2™ Vy(u)du)?

R(t,t) - Rf e " P (x(t)7 (u) ldu
- Rf 2™ E[x(t)y(v)1dv

(2.2.5) + Rf[ efT™ o 2T Ry, v)du dv .

But

RI e;JZ“ituE[x(t)ﬂu)jdu = I ev-JZTritu ﬁt(-u)du

- II eénitu eZTl’itV ﬁ(u,v)du dv ,

and similarly for the third term in (2.2.5). Hence

eé(t) = | I(e2n1tue21r1tv i} evzvmtueZntv . gZritu evzlmtv
. e“Z"rritue‘%lﬂitv) ﬁ(u,v)du dv

lul, [v]>W

2ritu _ e21r1tv| < 2, we obtain

i Now the inequality |e
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Y
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(t) <4 f I IR(U.V)ldu dv ,
lul,|v]|>W

proving (2.2.2), and (2.2.3) follows from the fact that ReLZ(R%).

0
Remark. Theorem 2.2.2 holds for multiparameter processes

{x(t), teR™, n=1

Remark. The bound in (2.2.2) may be written in a different

form as follows. From (2.2.6) we have

A

ed(t)

”leZ‘ntu ) eVZJmtu'.'ethv _ evz,“tvl-lR(U.V)ldu dv

o

4 ] |sin 2mkWt|«|sin 2mjwt]|R(u,v)|du dv .
k’j=-w

The term k = 0 = j is always zero, so that only the integral of Iﬁl

over the remaining squares enters into the sum. Also, for any integer
n, ei(z) = 0 and thus x() = Xy(

2.3. The Rate of Convergence in the Finite Sampling Approximation

for Time-Limited Stochastic Processes.

Butzer and Splettstosser (1977) derived a sampling approximation
for time-limited functions which, in fact, is a special case of
Brown's result (Theorem 2.2.1), and determined the rate of convergence
of the approximating series under certain conditions.

These results
are summarized in the following theorem.

Theorem 2.3.1. (Butzer arid SplettstOsser, 1977). Let f be a

continuous function defined on R! such that, for some (fixed) T > 0,

f(t) = 0 for all |t| > T and feLl(R 1). Then

e iasmna e v SRS IEE . UL e Sttt S
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. N(W) n, sin n(2Wt-n 1
(2.3.1) £(t) = m n=§N(mf(W) _“(z%ﬁ)_l , teR!

where N(W) = [2WT], the largest integer less than or equal to 2WT.

I1f, in addition, f(r)eLip a, 0 <a s 1 for some (fixed) re{1,2,...},

. +1
with constant L_, then for W > 12-

N(W) n, sin v(2Wt-n
[£(t) - n=§N( £ S|

(T’rl)Lr 1 1

(2.3.2) < 1 ° teR™ .

2" Y (rea-1) WO

Here Lip a, 0 < a < 1, is the Lipschitz class of continuous
functions f on lR1 for which there exists a constant 0 < L < « such

that sup |£(t+h)-£(t)| s L|h|® , heRY .
1
teR

The following result is the analogue of Theorem (2.3.1) for second
order processes which are not necessarily stationary. First we intro-
duce some notation. Let C(IRZ) be the class of all continuous functions

on R%, and |[R]] = sup JRES). Let Lip(Pa, ae(0,1], be the class
t,seR

of all functions ReC(]RZ) for which there exists a constant 0 < L < o
such that

|18, RII < LInI%Igl® , h,geR*

where Ah gR(t,s) = R(t+h, s+g) - R(t+h,s) - R(t,s+g) + R(t,s). The
?

first modulus of continuity is defined by

wy (6,X;R) = sup{lllxh’gRH: (hi s 8, |g| s A}
where § > 0, A > 0. Similarly, the r-th modulus of continuity of R, r is

a positive integer, is defined by




3 it asah e

14
w.(8,A;R) = sup{||A;’gR||: |h|s6,|g|sAl,
where ror
o RES) = 1§ DA R, sg)
’ k=0 2=0
It should be noted that for oe(0,1],

LipPa = RC(RD: w) (8,1:R) s L& 6 > 0, A > 0.

Theorem 2.3.2. Let x = {x(t), teRl} be a second order mean-square

continuous stochastic process with correlation function R such that,
for some (fixed) T > 0, R(t,t) = 0 for all |t| > T (time limited
process) and ﬁeLl(le). Then for all te]R1 and W > 0,

N(W) )
eq(t): = Elx(t) - n_éN( x(gp) S e ?

(2.3.3) s4f [ |§(u,v)|du dv ,
[u], [v[>W

and thus

N(W) .
(2.3.4) (t) = lim ) _(_g_rlsm niWen)
X oo an(w) ZW T w(2Wt-n

in the mean square sense, where N(W) = [2WT]. If, in addition, for

some positive integer r and some ae(0,1],

Rgt,sg Lip(2)cl
at as

with constant Lr’ then for every te]R1 and W > 0 we have

r+l, 2

L
2 r
(2.3.5) ey(t) s D o) (2T + S "= —(———)—1 .

Proof. (2.3.3) and (2.3.4) are special cases of (2.2.2) and

(2.2.3). To show (2.3.5) notice that, for all u,v # 0, we have
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n

CD™Ru,v) = JR(E + 2, s + pme HERSVgy g

and thus for all u,v > W,

) n T+l 141 N
20 DRw,vy = T 1 EHEHRWW)
n=0 m=0
T T 1+l r+l
= 1 T en™ahaD
.7- Il _p 1+l n=0 m=0
W
« R(t + -z:—}, s + ﬁ)e-hl(tw'sv)dt ds
Y T T o
] = [ {aRY R e Ty s,
. r+l rel i, oL
E-, -T- W -T- W u’ 2v
: A which yields the inequality
. T T
- 2(r+ A +
A. : VRl S f 1 Rees)lae as
‘ - Tl Do 3y
; W w U
x
. r+1,2 1 1,
1 < (2T + "'ZW) “’r+1(7£ * v ;R) .
2r,
Now since %:l(-f-}—s)- € Lip(z)u, it can be easily shown that, for any
9 9s
positive integer j,

2r,
w_ . (8,03R) < 6TA%w, (6,1, L_R(.S)y
™) J at” asr

and hence for all u,v > W,

r+1) 2 1 1.

A -2(r+1)
(2.3.6) IR(u,v) <2 L.(2T + —= .
! T W (2u) 40 (2v) T+0

. From (2.3.3) and (2.3.6) we have

B it S JEN S -
.
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eb(t) <4 [ [ |R,v)|du dv

lul’lVPW
-2(2r+a) r+l,2 du .2
<2 L.(2T + 5P [ )
r W oW ure

(r+a-1) 2 w2 (r+a-1)

- r (2T + r+1)2 1 ,

proving (2.3.5).

Under the conditions of Theorem 2.3.2 the approximating

sequence X, (t), in fact, converges to x(t) with probability one for
W

each fixed te]Rl. The rate of convergence is given in the following

corollary.

Corollary 2.3.1.

Let x be as in Theorem 2.3.2 and assume that
r>1when 1/2 <a <1 and that r 2 2 when 0 < a < 1/2. Then for a
separable version of x and each teIRl,

N§W)

i 2Wt-n
x(t) - x( n) %—ll + 0 a.s., as Wy» »
n=-fiony ¥ w(2Wtn 0~

where0<y<r+a—%.

(2.3.7) Wy sup
Wi

Proof. Consider a separable version of x. For W2 1 put W = 117

and for each fixed telRl, define Xu, ue[0,1], by

x(t) ,u=0
Xu=

xl(t),0<usl,
u

where x.l.(t) = xy(t) = zzﬁﬂ(w)x(ﬁ) 512 i ivjrtl'n . Then X is separable
u
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(in u). From (2.3.5), we have

S P e PRI A TS

2 2 _ 148
EXy-X,|© = Elx(t) - x4(0)]* s cu™'®,

. where € = 2720 D (3141)%, (r+0-1)"% and 8 = 2(r+a) - 3 > 0. Thus,
. by Kolmogorov's theorem (see Neveu (1965, p. 97)),
1 sup IXO-XU| +0a.s.ash+0, 0<Y<%,
hY O<u<h
and (2.3.7) follows by putting h = w—l— . 0O
0

2.4. Finite Sampiing Approximations for Non-Bandlimited Functions
and Stochastic Processes.

Theorem 2.2.1 (the case n = 1) states that, if f is the Fourier

transform of an L1 (R 1)-function, then the infinite sum

| T n, sin w(2Wt-n
; 1t A et

converges to f(t) pointwise everywhere as W + », It is of practical

L4
_— e S

interest to investigate the possibility that a finite sum of the

fom
N§W) .
n, sin w(2Wt-n)
(2.4.1) oW “Srwem ’

where N(W) is a positive integer-valued function of W > 0, would

T T M Ty,

—k

converge to f(t) under suitable conditions on N(W), and also to

v determine the speed of convergence. Such a result is obtained in
Theorem 2.4.3 , and its analogue for an appropriate modification

of the finite sum (2.4.1) is obtained in Theorems 2.4.1 and 2.4.2,
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and then extended to weakly stationary, harmonizable, and certain

stable processes. In all these results N(W) is required to tend to

infinity, as the sampling rate W tends to infinity, fast enough so
that Egﬂ- + o,

Theorem 2.4.1.

If £ is the Fourier transform of a f inite

signed (or complex) measure u on the Borel sets of the real line,
i.e,,

(2.4.2) £(t) = [ ™MWy , ter?!,

and if N(W) is a positive integer valued function of W > 0 such that
i . :1 N ;] D

. W T ®as W+ «, then for each telR1 s

(2.4.3) f(t) =

w-m n= -)g(w) ‘{W}—_) f(ZW) %{%%%%Sm,

and the convergence is uniform on compact sets

- SR

Proof. Consider the error

e (t): = lf(t) - iN o ‘%W;—) e %‘

‘ f eZ‘rrltudu(u) nfi:)(w)(l _{w}q) l— fw e'rrl W udu(u)]

. Sin m(2Wt-n
w{ZWt-n

B g o ok e i

(2.4.4)

i 2Wt-
- S0 SSED)] dju]




e , . r o .

3 1:
32 19
‘ ‘-l
et LMk w1 Wy, av1|dlul |
o | NOW*1 120 n="x Wy !
Z o . W . NW) k  -2min(S3 l
_ 2ritu 1 2ritv, 1 2W ;
= [ R e Vi L L e Jav|alul W |
2 - Mg NW*1 20 ne-k
» w . W, . .
] _ 2ritu 2mitv. ,
- = [ [ e iy O A v|dlul () |
| »-_2%
| - J Qlmitu f 21T1t(2!/\(x+u)K - (X)dxld|U| ()
-0 u {
| oW z
-4
. f . ) foo |- 2]2 4miWtx (x)dx‘dl I(u) 4%
! ~-00 u KN(W) H ;
| i |
3
{ . .
1 -2minx 1 ,sin m(N+1)x,2 . |
’ where Ky() = iy Bicg Inee 2 = et e’ s the ‘
! !
‘ Fejér kernel. Since lul(Rl) < » (see Rudin (1974), p. 126), given ;;

€ > 0, there exists an a = a(e)e(0,») such that if A = [-a,a], then

L

[u] (A9) < % . Since Ky 2 0 is periodic with period 1 and
9

| ]’KN(x)dx =1, (2.4.4) can be written as
%

(2.4.5) ey(t) < 2[u[(A%) + [u[A)Qy(t,M) < e + [u(RIQ (W

R R i b
v
IO

where u
. (2.4.6) Qu(t,W) = su ‘1 - ffwe“"iwu (x)dxl
1 QN |Ulga - __u KN(W) |
W

g Eyy e R R A T ol i ¢ ol (PR
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by -3 e h-y

By writing [ _ [ + [ 4 » (¥ = 59 , we obtain
ey T By 4 T o

% 4riwex
Qy(t,W) < l1 - [e™ KN(W)(x)dxl

%
!§+ uj-u
4niWtx

+ s l f/ e (x)dxl
lujsal, uf+u KN(W)
\.. : 4W
\:-“ “‘ Iul _u
;- I dniW
; iWtx
. (2.4.7) + sup | f et (x)dx'
1 ‘ lulsa’ | |ul+u KN(W)

2 AW

Let us denote by Ik(t,W), k = 1,2,3, the three temms on the Tight

, g
n - e hdmann o i

hand side of (2.4.7) in the order they appear. For Iz(t,W) we have

_ !5+2_val
‘ Iz(t,w) s f a KN(W)(X)GX

, 5w
q

= 2 : dx .
( J aKN(WJ (x)

3 : But for0 < x s %, KN(x) < T_C——z" where C(~ ;—) is a constant
. T (N+1)x

E (see Zygmund (1959), p. 90) and thus for W > a

= - 5

1 i Iz(t,m S 5 — / x—z dx

T [N(W)+1] 1. a4
*W

- “14%
"2 [N +1] X rgty
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_ 2C 2a o
= a)-»O as W~ .

aPiNw+1) (W

Similary,

m[N(W)+1]

IN

I5(t,W)

Now for Il(t,W') , using the fact that (f)”KN(x)dx = %—, we have
< ;.
I,(t,W) =2 é (1 - cos 41rth)KN(w)(x)dx . 5

Choosing any &§(W) such that 0 < §(W) <% and (W) = O(N%W)_)’ we

obtain

b

I,(t,W) z[ fs(w) [ ](1 4mWex) (x)dx
, = + - COS 4T X .
1 o s N

Since for all x, KN(x) < 2N+1 (see Zygmmnd (1959, p. 90), then

&(W)
(1 - cos 41rth)KN(w) (x)dx < 2[2N(W)+1]8(W) » 0 as W + =,
0
Also
f%(l 4nWtx) (x)dx 2fg'zzw (x)dx
- COS 4mWtx X = Sin Z2uWtX » X
50 o 5(W) W

%

2C . 2 1
S —5—=—— [ sin 2nWtx -5 dx
L ,[N(W)‘Fl] s§(W) ;z

Wit :
= ACW|t]_ j"l ' (Sin )zdy

m [N(W)+1] 2nW|t|sw) 7

s C|t] - >0 as W+ w,

L
NW)+1

Notice that this is the only bound which depends on t and that the

dependence is linear in |t|. It follows that for W > a,
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8aC
2 [N(W)+1] (W-a)

+ 2[NMN+118N) + ge=ld

(2.4.8) QN(t,W) <

and thus QN(t,W) + 0 as W+ <, Hence, for each fixed t and ¢ > 0,

we have by (2.4.5) that lim sup ew(t) < £ which implies that ew(t) +0
W

as W+ o ., It is clear from (2.4.8) that the convergence is uniform

on compact sets. 0

The following theorem gives a more concrete bound on the error
committed by considering only a finite number of samples in reconstruc-

ting a function which has the representation (2.4.2).

Theorem 2.4.2. Let f,u,W,N(W), and ew(t) be as in Theorem
(2.4.1). Then for an arbitrary (but fixed) W > 1 and every
jt] < %?—with t# 7%, nelN = {0, +1, + 2,...} we have

2.4.9)  ey(t) < 2[u|(RY([t] + Lsin2We] W o0 luow-1) .
( ey lul (R ([ t] +(1-oTnen N0 lul {lul

Proof. Fix W> 1 and t # 'Z% , neN. From (2.4.4) we have

(2.4.10) ew(t) s [ IHy ytwldiul ,
where
. N(W) mi Bu
- J2mitu _ n W
(2.4.11) Hy y(tu) = e niN(W)(l . ﬁ—(%y_‘q)e

, Sin w(2Wt-n
w(ZWt-n

If A(W) = [-W+1, W-1], then the inequality (2.4.10) may be written

as




s o e -

N

23

(2.4.12) ey(t) s ( [ + f ) [Hy w(t,u)|dfu] @) .
AW acy

By (2.4.4) we notice that [Hy (t,u)| = |1 - [& W2 dmiWex oo
N - (u/2W) “hon
1

and thus |Hy . (t,u)] < 2 for all teR, ueRY, N2 1, and W > 0.

From (2.4.12) we obtain

(2.4.13)  ey(t) < A{W)IHN,w(t,u)ldluI(U) + 2|u] A“N)

Now consider the integral

Zw1uz
1 2| 2| N(W) ;
W =77 | O - WD eosmae & 1t <y !

’

where Cnws {ze€: 2] = 7%[N(W)+1]} . From Cauchy's residue theorem,

we have :
2nitu
= - Z—WLE-I_ *——

(2.4.14) Iyw(tw = - FeeD) Smwe '3
. N !

Tl = Uu
n ,

¢ A ye Xocn

=N NOD+L (g 1) 2T

and thus from (2.4.11) :

W 2mitu
Hy w(tow) = WWI%T Tt in 2nWe - Iy w(tsw) , [t] < sz!:l

Hence




from a result by Piranashvili (1967) we have for ucA(W) that,

] 20|t N

A (2.4.15) [Hy (6] < gRpsp + Isin 2me] + 1Ty (e, Jel <MD

E . |
. 2riuz . . . .

_ Since e is an entire function of exponential type 2rw|u|, then

3

1 4 W ;
[Ty w(t,w| < - - .-
N, Wt ZINODIT ;e e 10T

| ._‘Q.A"’,

and fram (2.4.15), that for W > 1

i < Wit 2W|51n 2nWt | 1 N A
..} | lHN,w(t,U)' s TN W) (l- o )[N(W)]2 m , UeA(W), It} _(_Zw)_ ,;

and hence for W > 1 and lnl w? It < é%‘)- ,

a0 e R e

Thus from (2.4.13), we obtain

5 3
£ ee(0) < 2Jul (RY)[[t] + Jilﬂ?:‘,—‘)“ﬂ‘;n,l ]+ 2lul ) -
" -e |

forW>1and'“'#|t|<—§%l, neN . 0

- Remark 2.4.1. We now comment on the two bounds obtained in

Theorems 2.4.1 and 2.4.2 . From (2.4.5) and (2.4.8) in the proof of _
Theorem 2.4.1 we have, r

ey(t) < 2lul{[ul>a} + 2|u] (R} {GHIT + 28
m-[N(W)+1] (W-a)

~ i T T VI SNy

+ [N(W+1]6(W)}
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. 1 N 4 NW) . a
= 2|u|{|u]>a} + 2|u|(R ){Cltw !4-1 + 72 NW+1 ~W(W-a)
N(W) [N(W)+1] (N
+ w G(W)JN(W)

‘_ =; Bl(t,W)

for all W > a and te]Rl. From Theorem 2.4.2) we have that for each

Ny g

- ith oL NQW)
fixed W > 1 and t with W £ 1t] < W °

- 1 |sin 2nWte| L
ey(t) < 2 {|u]>W-1} + 2|u|(R){|t]| + - 1
= BZ(t,W) .

‘ 2
m
In the bownd Bl’ C could be taken to bez—and 6(W) may be chosen as

: small as desirable so that the fourth term in the expression of B1

may be omitted (since it can be made arbitrarily smaller than the
| other three terms by an appropriate choice of §(W)). The bound B,

) has the advantage over the bound B, of holding for all teIRl. It

should be noted that even though for each fixed t, Bl(t,W) + 0 as
W+ , for t’s large relative to W, namely for |t| > %M?.ﬂ ’

1: the bound B1 (through its second term) is larger than |u|(1R1) which

T is an upper bound on |f(t)|. Large as this bound on the error may
‘ ; seem, there is no smaller bound available for such t’s and, in fact,
1 1 " it seems quite likely that at least for certain t’s the approximation
4 error would be of the magnitude of |f(t)|. The bound B, holds only
on the interval |t| < %)- excluding the sample points 'Z% (at which
we know anyway that the approximation error ew(t) vanishes). However,
it has the following advantages over the bound Bl' It contains one

term which vanishes at the sampling points and is thus very small near




the sampling points; thus the bound B2 is more sensitive than B1
near sampling points. Also, the second term of B2 is always smaller
than the second tem of B;» and putting a = W-1 to equalize the
first term of both bounds, it is easily seen that the third termm of
B, is always smaller than the third term of B,. In conclusion, in
the restricted region where it holds the bound B, is lower and more
sensitive to the location of the sampling points than the bound B,,
while, of course, B1 provides a bound even where B1 does not hold.
A typical plot of the two bounds for fixed W > 1 (and a = W-1)

is as follows.

B|(f,W)
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Under further conditions a. function of the form (2.4.2) can be
approximated by the simplér finite sums in (2.4.1) rather than those

in (2.4.3).

Theorem 2.4.3. Let f be the Fourier transform of a finite signed

(or complex) measure p, on the Borel sets of the real line, which

satisfies
(2.4.17) J ¢(wdluj) <= ,

where ¢ is a symmetric non-negative function, strictly increasing on
(0,»), and such that ¢{u) + = as u + », Let N(W) be a positive

integer valued function of W > 0. Then for an arbitrary (but fixed)

W>1, and |t] <M2‘-xl such that t #7% , neIN, we have

" . =lft ) N(W) £(Dy sin w(2Wt-n

1! ey(®) = £ an(w) o |

",( “
f (2.4.18) < 2282 2 %le00 o apy|(RY1SEDZMEL L e pee 0,
J m(1l-e )
: where (W) = | ¢(ud|u|(u). If, in addition,

|u|>W-1
(1) %ﬂ»wasw-voo,and
(ii) NW) = O(ewm-l)) for same € > 0 ,

f X then for all teR!, B(t,N) + 0 and ey(t) + 0 as W =,
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Proof. Fix W > 1 and t # -ZPW , neIN. As in (2.4.4) we obtain
ey(t) s [ 16y y(t,u) fdfu) (w)

=(f + [)G, ((twldu]|) ,
A(W) AC(W) GN’W

where A(W) = [-W+1, W-1] and

: NW) ni Do . .
(2.4.20) Gy (ts) = elmitu § e W sin ﬂ%th n
’ ='N(W) ™ -n

Also as in the proof of Theorem (2.4.1), we notice that
u

W, .
) 4miWtx |
Gyt l = 1= [ e gy (x|
.JE-W
where Dy(x) = Z?::_Ne'z“inx = ﬂgﬁiﬂ_zﬁﬂlz is the Dirichlet kernel. ] -,

Dy is an even periodic function with period 1 and ]%lDN(x)]d.x <
1 + 2n w[N+%] (see Kufner and Kadlec (1971), p. 230). Then for all

telRl "
1 T ]
S Gy e i@ <2 [ G| [ (Bygy @ laxje@dlul
A ) AC) T e
(2.4.21) x 1+$n r:I§W)+!5 [ ¢d|n| ) .
AS(W)

Now, for ueA(W) and -%—wn—l- £t < MZ%Q , consider the integral

2riuz
e

1
IN,w(t’u) T 2ni / (z-t)sin 2nWz dz ,

Cn,w

where CN W= {ze€: )z| = 7% [N(W)+%]}. Proceeding as in the proof n
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of Theorem (2.4.2), we obtain

|Gy w(tsw | = Isin 2nHe| « [Ty (t,0)|

Alsin el o W oo, Jal g je) <9

A

n(1-e N e

4 sin 2nWWt W | nj N
(2.4.22) g 1211 ZTVR , L £ Jt] < _g%)_

n(l-e 'rr) NW) W

and (2.4.8) follows from (2.4.1) and (2.4.22). It is clear from
conditions (i) and (ii) that B(t,W) - 0 as W + = for all te]Rl. Now
fix telR! and let W > .  Whenever W is such that N(W) > 2W|t| and
t = -2% for some neIN, then we clearly have ew(t) = 0 from its very
definition. As W - = along any other values (t # -2% , nelN), then

ew(t) < B(t,W) - 0. It follows that ew(t) + 0 as W o, 0

Remark 2.4.2. It is clear that the approximation of f(t) by a
finite sum of the form (2.4.1) is a much more delicate problem than
its approximation by the modified finite sum of the form (2.4.3).
Hence the additional assumptions on the function f required in
Theorem 2.4.3, compared with Theorem 2.4.1. As in Theorem 2.4.1,
condition (i) of Theorem 2.4.3 puts a lower bound on the growth of
N(W) as the sampling rate tends to infinity. Such a condition is
quite natural and anticipated, as one intuitively expects that unless
enough terms are employed, the approximation may be inadequate.
Condition (ii) on the other hand puts an upper bound on the growth
of N(W) and in this sense it may seem somewhat counterintuitive.
Condition (ii) could be improved, i.e. the restriction on the growth

of N(W) could be weakened, if a better bound than that used in the
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proof of Theorem 2.4.3 could be found for the function

2nitu _ ZnitVDN

Gy, w(tow = e aw C

as a function of W for fixed t,uelR1 (or after same algebra, if the
/2

_fe
Wy

rate of growth of |f Du(x)dxl as u + » can be found, instead of

/2

the rate of growth of [/ “|D,(x) |dx which is used in the proof of
0

(x) = §£‘._‘_"L)

Theorem 2.4.3, where Du is the Kirichlet kernel D Sin X

It is not known at present whether some restriction on the growth

of N(W) is necessary for the approximation error to tend to zero as
W + o, or whether this result holds with no upper limit on the growth
of N(W) as one may intuitively be tempted to expect, and condition
(ii) arises only because of the specific proof used here. Also, it
is not known at present whether a bound similar to B1 (see Remark

2.4.1) holds, in this case, for all te]Rl.

The preceding results are now extended to weakly stationary
stochastic processes (Theorem 2.4.4), harmonizable processes

(Theorem 2.4.5), and to certain stable processes (Theorem 2.4.6).

Theorem 2.4.4. If x = {x(t), telRl} is a mean square continuous

weakly stationary process, and if N(W) is a positive integer-valued

function of W > 0 such that %ﬂ + o as W+ o, then for each te]R1

(2.4.23 t sin w(2Wt-n ,
) x(t) = w-m n—éN W) '(%TL‘) (ZW) _—TZ%_TL

where the convergence is in the mean square sense uniformly on compact
sets, Furthermore, for any fixed W > 1 and |t| < h—'%l such that

t"ﬂ% , neIN, we have
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E|xco n—gN(W) - RO e iz

2.4.28) < aful(RH[|¢| +_J_S_1n_.12r1ﬂL_]2[WV(JWT]z ¢ alu|{|ul>H-1} f
D ;.
and

N(W)

E|x(t) nz)fN(w)x(ﬁ) %%L;Tn)_l 2 i

. 2 .
(1+2n w[N(W+5]) " | 1 sin 2mWt

(2.4.25)

IA

where ¢ and ¢ are as defined in Theorem 2.4.3. If, in addition,

N(W) and the spectral measure p of the process satisfy the condition

in Theorem 2.4.3, then for all teR!

] N(W) sin w(2Wt-n
(2.4.26) x(t) = m _)EN(w)x(zw)—‘f“n( Wt-n) °
is mean square.

‘Proof. Since x is mean square continuous weakly stationary, we

have for all telR1
_ _amith
R(t) = E[x(t)x(0)) = [ e du(n) ,
and © _
x(t) = | ¥z ,

where p (the spectral measure of x) is a finite measure defined on
(]Rl,B(]Rl)), {1z, AeIRl} is a process with orthogonal increments,
and for all -w < a s b < =, E|Z(b) - Z(a)|% = u{(a,b]} .

Consider the mean square error

N i 2
n n,sin m(2Wt-n
Elx(t) - n=§N(1 - ﬁ]éiylﬁ')x(iw) 7(2Wt-n) ‘

; ef,(t) 1=




E' f [e2TitN -§w) a- _{w}__ae"l W sin "(ZWt'“)]dZ(A)l

“m(2Wt-n) -
w . N(W) M = 2
2mith _ W sin m ZWt -n), |
<l an(W) - e e | W)
© . 2
(2.4.27) = | |1 - fA e4mwm‘KN(w)(u)du' du(r) .
-00 A
oW

Since this expression is similar to (2.4.4), (2.4.23) follows as in
the proof of Theorem 2.4.1, The proofs of (2.4.24) and (2.4.25),

(2.4.26) are similar to those of Theorems 2.4.2 and 2.4.3 respect-

ively, and hence they are omitted. a

A second order stochastic process x = {x(t), tenll} is called a

hammonizable process if its correlation function R(t,s) = E[x(t)x(s)]

is of the form

R(t,s) = [ [ eZWi(tu-sv)du(u,v) , t,Senll ,

-0 -

. —~— R,

Theorem 2.4.5. If x = {x(t), tenll} is a harmonizable process,

and if E%!l + o 35 W+ =, then for each teHQl (2.4.23) holds, where
the convergence is in the mean square sense uniformly on compact sets.
Furthemmore, under the conditions of Theorems 2.4.2 and 2.4.3,
bounds on the mean square error similar to (2.4.24) and (2.4.25) hold

as well as the approximation (2.4.26).

Proof. Consider the mean square error

eVZJ(t)Z = Elx(t) - n=£N( W%WHXC ) S1n TTt!Z‘r\:t n)l

where u (the spectral measure of x) is a complex measure on (ﬂ(Z,B(nRZ)).

L*m_ﬁ.«‘.“ S
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_ ® f” Zritu _ N§“D a - !n| )e“i %1j sin n(ZWt-nQ]
_-i B4 [e n=_N(W) +1 ™ t_n
€ n='N(W) N +1 m t'n u ’
4nilWtu

s_i _£ 1- . KN(MD(u)dul

.1/2.2_‘T

\'A
W

KN(W)(v)dvld]ul(u,v) .

By the familiar technique used in the proof of Theorem 2.4.1, we

have

ea(®) < [l (RAQ(L,W) + aluia%a)

where A = [-a,a], a > 0, and the proof is completed as in Theorems

2.4.1 to 2.4.3. d

We finally consider certain harmonizable, but non-stationary, stable
processes. A random variable X is symmetric a-stable (SoS), 0 < a < 2,
if its characteristic function is of the form E(eitx) = exp(-bx|t|a)
for some positive constant bx. A stochastic process x = {x(t), teﬂRl}
is called SaS, if every finite linear combination of its random
variables is SaS. The following can be found in Shilder (1970). If
X is a SaS random variable, then, for 1 < a < 2, the map X |— b;/a
defines a norm on a linear space of SaS random variables: ||X|| = b;/a.

If the process {Z(A)): A20} is SaS with independent increments, then

the function F defined on [0,») by F()\) = ||zm||g, A 2 0, is non-
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decreasing and thus defines a Lebesgue-Stieltjes measure ug on
the Borel sets of [0,). If the family of functions {ft(°)’ teR1}

belongs to Lz(uF), then the integral
? 1
x(t) = [ £, ()AZ(A) , teR™,
0
defines an SaS process and for every tenil,

|1x(e)] g = / | £,(0) | %dup (V)

Theorem 2.4.6. Let a stochastic process x be defined by

x(t) = [ cos 2ntx dZ(d) , teR!
0
where {Z(A), A20} is an SaS process with independent increments and
finite measure Hp» and 1 < a < 2. If N@-» © as W+ », then for
every teDRl, (2.4.23) holds, where the convergence is in the
||+]|snom. Furthemmore, under the conditions of Theorems 2.4.2
|

and (2.4.25) hold as well as the approximation given in (2.4.26).

and 2.4.3, bounds on the

|a-norm error similar to (2.4.24)

Proof. Consider the a-mean error

NW) 5 -
o = lxw - 1 o ks S

o

[

0

n= N(W) mT(ZWt-n

-]

- a
= 6 |fN’w(t’)‘)l duF(A) » Say .

As in (2.4.4), we have

N(W) R
cos 2ntA - § a - %,'—l)cos D%A —Sﬁ(l-z%(ﬂv)p—@-}adﬁ:(k)
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Ny

- A
W
fN,w(t,A) = cos 2nth - [ \

B W

cos 2ﬂt(2W)'+>‘)KN(w) (y)dy

Ny
=|>

Re[e A N LI

2nith _ I
=

>

and the proof is completed as in Theorems 2,4,1 to 2.4.3, 0

The same results hold for SaS processes

[+ 4] a 1

x(t) = [ cos 2ntx dZ,(3) + [ sin 2nt) dz,(A) , teR"™,
0 0

where Z; and Z, are independent processes as in Theorem 2.4.6.

- These processes are the SaS (non-stationary) analogues (1 < a < 2)

of the real stationary Gaussian (a = 2) processes.

2.5. Sampling Approximation Using Walsh Functions.

Recently, Walsh functions have been increasingly used in digital
commmication systems: they are easily generated by semiconductor
devices, their pulse shape (1,-1) conforms with operations of digital
computers, and they play, for discontinuous signals, the role complex
exponential functions (and Fourier transforms) play for continuous
signals. In addition, they have been used in experimental sequency-
multiplex systems, image coding and enhancement, general two-dimension-
al filtering, etc.

In this section, using Walsh functions,we derive a sampling
approximation and error estimates for functions which are not necessar-

ily continuous, and for stochastic processes which are not necessarily

mean square continuous. These results are the Walsh-analogues for

i mw«l"
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W-continuous functions of the Fourier results of Sections 2.2 and

2.3 for continuous functions. Results similar to those of Section

2.4 should be feasible for W-continuous functions, but complete proofs ,

have not as yet been obtained. )
The following notation and definitions will be used in the

sequel. R_ = [0,»), IN is the set of all integers, N _ is the set

of all non-negative integers, and D, is the set of all non-negative

dyadic rationals. Each t > 0 has the dyadic expansion

oo

(2.5.1) t=

) tjz'j , t5e(0,1)
j=-N(t)

for all j, where N(t) is such that ZN(t) <tc< ZN(t)+1, and we put
tj = 0 for j < -N(t).

If teD,, there are two expansions and the
finite one is chosen so that expansion (2.5.1) becomes unique. The
componentwise addition modulo 2 (dyadic addition) of t,seR_ is defined

bytes =) [tj-sjlz'j.

j=-oo
The Walsh functions can be defined in several ways. The following

definition is based on the system of Rademacher functions {R (t)} _pv >
+
te[0,1), where

Ro(t) - e1ri[2t]
R,(1) = Ry(2"t) , n21,

and by
it
R() =e ™1, nen,, te[0,1) .
The set of Walsh functions {lpn(t)}ndN on |0,1) is defined for each
+

non-negative integer n = 2g=-N(n)nj2-j by

N(n) n_j .N(n)+1
(2.5.2) V(1) = jgl (R;(t)) " = exp{ri i) n_jtk
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and is orthonormal and complete in LZ[O,l). The Walsh functions are
extended to {tpu(t) }u,te]R+ by

N§u)+1

b (W) =y, (1) = exp{ni ul_jtj}. t,ueR, ,

j=-N(t)
and they have the property that, for all uelR_, whenever t e s ¢ D,
v, (tes) = y (D (s)

A function f on R, is called W-continuous if f is continuous on
R, \D, and right continuous on D,. It is clear that the Walsh func-
tions are W-continuous. If feLl(]R +) , then the Walsh-Fourier transform

(WFT) £" of £ is defined by
(2.5.3) ) = [ £y, (Ddr , ueR, ,
0

and £ is bounded and W-continuous. If £, £'eL1(R,) and £ is W-

continuous, then the WFT can be inverted to give
® W

(2.5.4) £(t) = [ £ Wy, (wWdu, teR, .
0

(See Butzer and Splettstosser, 1978.) The Walsh modulus of continuity
of a function feL!(R,) is defined by

w(£38) = sup [|£(+) - £C-o)|| |, ,6>0.

0<h<s Lirh

For a > 0 and a constant L > 0, the Lipschitz class LipLa is defined
by
Lipa = {£eL'(R,): w(£;8) s L6*, &> 0} .

A function feLl(lR .) is said to be dyadic differentiable if there
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exists a geLl(]R ,) such that

T -j-1
lim| |5 )} 2°[£(-) - f(-02 7 )] - g()|] 4 =0,
meo  j=-m L°(R,)

g is called the first strong dyadic derivative of f, and is denoted
by Dg. For r > 1, DITIf is defined iteratively by pIT)f =
D[H(D[r'l]f). If £ and D[rJf belong to L1(1R+), there exists a
constant M such that w(f;8) < Mdrw(D[rJf;é), § > 0.

A complex function f on R, of the form

2n
(2.5.5) f(t) = f F(u)\pt(u)du y teR
0

for some neIN and some FeLl(O,Zn), is called sequency limited
to 2", A sequency limited function f which is W-continuous and in -

L1(1R+) has a sampling expansion of the form:

+ ’

(2.5.6) £1) = ] £:830; Mok, teR
k=0 2

where J(v;t) = ]th(u)du, t,veR, (Fine, 1950). As it was pointed out ]
0 :

by Kak (1970) and Butzer and Splettstosser (1978),

J(1;2Mtek) = 1 i (t)
(27", 27 (k+1))

and thus (under the stated conditions) the functions that are sequency
limited to 2" are precisely the functions that are constant on each
interval [27 Tk, 2'"(k+1)), a rather small class (unlike the class of
bandlimited functions).
A (dyadic) sampling approximation for time-limited functions
(which are not necessarily continuous) was derived by Butzer and .

Splettstosser (1978):
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Theorem 2.5.1. (Butzer and Splettstosser, 1978). Let f be a

W-continuous function on R such that £(t) = 0 for all t 2 T, for
some T > 0, and f,fweLl(R+). Then

Nin) X
(2.5.7) f(t) = 1im f(-—n-)l

(t) , teR
mo ka0 2% [27%,2M(k+1)) e

where N(n) = [2™]. If, in addition, either (i) DITJf exists and
D[r]feLipL/Mx or (ii) feLipL(a*r), for some fixed a > 0 and reil,2,...},
then

N(n) T+o

k L2 -n(r+o-1)

2.5.8 £(t) - ] £(=91 ] ()] s =2 ,
(258 teR, ® - LG (27,2 " (k+1)) ra-l

We now derive a sampling approximation as well as error estimates
for functions which are the WFT of finite (or complex) measures and

thus not necessarily time-limited nor sequency limited.

Theorem 2.5.2. If f is the WFT of a finite (or complex) measure

u on the Borel sets of R, i.e.
£(t) = (I) Ye(Wdu(u) , teR,
then for every telR, and neNN,

_ v ek I O
2.5.9 f (t) = f(-))1 (t) = d R
(2.5.9) () kgo (2“) ™%, 2 o)) ) (f)wt (u)dy (u)

where for each (fixed) teIR o WEn] (u) is the Zn-periodic extension

of the function wt(u), 0su<2"toR,, and

+?

(2.5.10) [£(t) - £,(0)] s 2ju][2"=) .

Thus for each teR,
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(2.5.11) f(t) = lim £.08) .
o
L If, in addition,

u is absolutely continuous with respect to Lebesgue

measure, and feLip, (a+r) for some o > 0, L > 0, and re{1,2,...},
L

then for every teR .

T+a-1
(2.5.12) £(8) - £,(0)| s (e

. Proof. Since wt[:n]eLl[O,Zn) is periodic with period Zn, W-contin-
1 uous, and of bounded variation on [O,Zn), then the partial sums of its
2 Walsh Fourier series converge everywhere to w£n] (see Chrestenson,
o 1 1955, Theorem 2), i.e. for each teR,

B [N,y . % -n

- (2.5.13) e (u) kzoan’k(t)wk(z u) , ueR,
‘ where n
& - »-Nn -
| ap (1) = 2 (})’ v (MY 2V av

-

| = (/) Ve (V) (V)dv

.
| .

1 } -/ vy (2", (K)dv

: ‘ 1 .

| = [ 4,(2 ® v
‘ 0
1 = J(1;2"t o k)

=1 (t)
3 [27%,27 M (k+1))
! Let

|
]
i
|
!
i




a
¢ (t;n) = | ¥ ek @ - [ o™ @)
L ko 2V 2%, 2 (k) o ¢
< me[n](U) - lz(‘b (2"w1 (t)jdjni ) .
0ot k=0 K (n"%,2 " (k+1))

Using (2.5.13) and the fact that for each neIN and teR_,

K
[n] -
oty - T v 2t ()| < 2
i o'k 12,2 (ke 1)) |

for all ueR and K > 1, it follows that

EK(t;n) + 0 as K+ «, for each teR and neN , !

proving (2. 5.9). Now

EOREACTERIENOLTOR vM () |

A

[ 1w - oM el
zn

2l (2"

A

hence (2.5.10) and (2.5.11). To prove (2.5.12), notice that if

5‘—‘3—?—)- = F(u) and chipL(r+a), then

(2.5.14) Fw| sL 2% W™ uso,

(see, Butzer and Splettstrdsser (1978)). From (2.5.10) and (2.5.14)

we have

1
— du
r+a
Zn u

z'n(ﬂa'l) . D

|£(t) - £,(8)] s L grrol I@

L 2r+o.—1

rta-

AN L e % B
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We end this section by extending the results in Theorem 2.5.2

to stochastic processes which are not necessarily continuous. We

first introduce the following notation. A function R on BRE =

[0,2)x[0,») is called Wz-continuous, if R is continuous on IQE\DE
and continuous from above on DE (in the sense of Neuhaus, 1971). If

Rng(Hlf), the first modulus of continuity is defined by

w(8,A;R) = sup{lIAh’gRIILl(Rz), 0<h<s§,0sg<2}, §,)>0,

+
where Ah,gR(t,s) = R(teh, seg) - R(teh,s) - R(t, seg) + R(t,s), Also

the class LipIEz)a is defined by

LiptPa = ReLA(RE): w(8,MiR) s LA, 650, 1> 0} .

The WIT of a function ReLl(IRE) is defined by

[+« B« + ]

R¥u,v) = [ [ Rt )0 (0)v,(s)dt ds , u,veR, .
00

Finally, if R is wz-continuous and R,RweLl(]RE), then (as in (2.5.4)

[+ B ]

(2.5.15)  R(t,s) = [ [ R'(u,v)o Wy, (Wdu dv , t,s¢R, .
00

Theorem 2.5.3. Let {x(t), teR +} be a second order stochastic

process with correlation function R. Assume that R is Wz-continuous,
RRVLI(RD), R(t,) LY(R,) for all teR,, and R¥(+,v)eL}(R,) for
all veR_. Then for each teIRl, ne N

(2.5.16)  x (1): = ] x(-5n

k (® =& yMwywa ,
k=0 2 0

[27™%,2 7 (k+1))

where the cquality is a.s., the series converges in quadratic mean,

and y is defined by the quadratic mean integral
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y(u) = Ré v, (Ox(t)dt , uelR, .
Also, for each telR, and nelN,

ap o0
(2.5.17) el?;(t): = E|x(t)-xn(t)|2 <4 ff lRw(u,v)|du dv ,
n n
272
and thus for each teR

(2.5.18) x(t) = 1lim xn(t)
oo
(2)

is quadratic mean. If, in addition, ReLipp (r+a), for some a > 0

and re{1,2,...}, then

L 2Z(I‘-"m)
(r+a-1)

(2.5.19) HOK g-en(r+a-1)
Proof. The proofs of (2.5.16}, (2.5.17), and (2.5.18) are
similar to those in Theorem 2.2.2 and hence omitted. To show

(2.5.19), notice that for any u > 0 we have the dyadic expansions

us J w2, ul= )) wl, 27 ,
j=-N(u) 7 j=N@)+1 I
and thus
1 N%u) -1
¥,(u ) = explmi (u,ul=-1,
'=-N(u) J )

(see Butzer and Splettstosser, 1978, p. 102). From (2.5.15), we
have that for any u > 0

[+ ]

Rw(u,v) - (f) {) R(t,s)wu(tou'l)wv(s)dt ds

- / R(teu™t, )y, (t)y, (s)dt ds , veR, ,

Similarly for any v > 0




R(u,v) = - [ R(t,sov 1)y (t)y, (s)dt ds , ueR,

and {for u,v > 0

[- < <]

R¥(u,v) = | [ R(teu’}
00

. sov 1)y, (¥, (s)dt ds .

Hence for u,v > 0

RVu,v) = 7/ [ [Reteu™?, sevl) - R(teu”
00

1,S)

- R(t,s0v 7)) + R(t,5) 10, (D), (s)dt ds
and

() 1 -1, -1 L 2,r+a, 2,1+
IR'(u,)[ s zw(u ,2v 5R) s 7 (U)r °‘(V ¢ uv>0.

Now from (2.5.17) we have

+ ® 2 2(r+a) _ .
erzl(t)SLZZ(ra)[f—l—-du] =L2 p-n(r+a-l) o .
n

T+o ~ (r+a-1)

2 u

The following corollary shows that the approximating sequence
1

xn(t) converges to x(t) with probability one for each teR™, and

gives the rate of convergence.

Corollary 2.5.1. Let x be as in Theorem (2.5.3) and assume that

r +a > 2. Then for each teﬂll,

2yn

(2.5.20) 2 0

sup Ix(t)-xn(t)| +0 a.ss.asny+x,
n>n0

where 0 < vy < I%E - 1.

Proof. For each fixed t, define Xu, 0susl, by

x(t) foru=20 i

1 1
)S,)(t) for2—23-<us;ﬂn—_n—,nzl, |
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00 k .
where x_(t) = },_x{-=)1 _ ) (t) . Then X is separable
% k=050 oMy 2 M ke 1))

2n -Z(n-l))

in u and from (2.5.19), we have (with n such that 2°“" < u s 2

- Zn) 1+B 1+B

EIXgX,l% = Elx(®-x (0% = c2 < Cu

s u>0,

2(1+a)
where C = L—Z——-Z—— and B = r+a-2 > 0 ., Thus, by Kolmogorov's
(r+o-1)

theorem (Neveu, 1965, p. 97),

41 sup lx(t)-xn(t)l <1 sup IXO-Xu] +0a.s.ash+0,

Y Y
h' gl o h' 0<u<h
22n
-2n0
and (2.5.20) follows by putting h = 2 » g > @ . 0

B e




CHAPTER III
Sampling Expansions for Operators Acting on
.i . Certain Classes of Functions and Processes
e 3.1. Introduction.
:;:1 : In this chapter the problem of reconstructing bounded linear
. operators acting on classes of functioms bandlimited in the sense {i
of Zakai (1965) and of Lee (1976a) will be considered. Sampling
’ expansions for bounded linear operators acting on classes of func-
| . tions with wandering spectra will also be investigated.
Recall that a function of the fom f(t) = jwo eznitu?(u)du ,
_wo
; where Wy > 0 and %eLz[-WO,WO] is called conventionally bandlimited
’ to Wy. The class of all such functions will be denoted by Bo(wo)
f and is a Hilbert subspace of LZ(IRl). Every feB;(Wy) has the follow-
, ing sampling expansion and convolution representation
C .
8 (3.1.1) - _ff(u) et au , teR',
<

where W 2 wO , and the series in (3.1.1) converges uniformly on R!

and also in LZ(IRI). The functions

¢n(t;w) = S;nzxt%gt-n ] ns= 0’ : 1, i 2,-..,

form a complete orthogonal set in BO(W) which is strictly larger

s AT AR AT AT ~ % = i T 1 et S 5 AR S WO WO A ATAT o 5o,
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than BO(WO). It is thus interesting to notice that when W > Wo
the partial sums of the series in (3.1.1) belong to Bo(W) and yet
its pointwise (or LZ(]Rl)) limit belongs to the smaller subspace
BO(WO). Of course, when W = WO’ (3.1.1) is the expansion of f
in terms of the basis {¢n(t;W0)} of BO(WO).

Zakai (1965) extended the classical concept of conventional
bandlimitedness to a broader class in which the functions need not be
square integrable. He also proved that if feBO(WO) and W > WO’ then

(3.1.2) Z -nt £(z )

n=-o©

A o 1
and if, in addition, f(u)(1 - e 0) ~ belongs to L [-WgsWy), then

(3.1.2) is also valid for W = wo.

3.2. The Bandlimited Case.

Kramer (1973) derived a sampling expansion for bounded linear
opcrators acting on conventionally bandlimited functions, and Mugler

(1976) derived a convolution representation for such operators.

Theorem 3.2.1. (Kramer (1973) and Mugler (1976)). If T is a

bounded linear operator on B (Wb), then for every feBo( )

sin n(ZW ( )-n)

n=s-o

[Tf](t)

o sin 2nW0(°-u) 1
_n{ f(u) T[ 27TWE(’ _u) ](t)du , teR

(3.2.1)

When T is time invariant, i.e. [Tf(+-a)}(t) = [Tf](t-a),

(3.2.1) takes the simpler form
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sin 2n W ( )

[TE](t) = ) T 1(t - -——9
] RZ YA [—_('T_znw
sin ZWW )

/ £(t-u) T[—Z—W—-(—)——] (Wdu , teR!

The significance of Kramer's expansion is that Tf may be re-
constructed from samples of f itself rather than from samples of
Tf. For instance, the differentiation operator [Df](t) = a%-f(t)
is a time invariant bounded linear operator on BO(WO), hence from
(3.2.1) we have
d sin ﬂ(Zth-n)

) = v n
W= 1t Mragewn 1

Kramer's sampling expansion (3.2.1) will be generalized to
broader classes of functions. The following notation will be used

in the sequel. ‘‘or a non-negative integer k, Lz(uk) is the class of

all complex valued functions defined on Bll that are square integrable
. _ dt 2
with respect to the measure duk(t) = EI:;i;E . If felL (uk), then f

defines a tempered distribution (denoted also by f) on the class S

of rapidly decreasing functions by
f(8) = [ £(t)6(t)dt , BeS .

(See Chapter 4 for relevant definitions.) The distributional Fourier
transform of f is the tempered distribution £ defined by %(e) = £(6),
8eS. The spectrum of f is the support of %. For k = 0,1,2,... and
w0 >0, Bk(wo) is the class of all continuous functions feLZ(uk)
whose (distributional) spectrum is contained in [-WO,WO], and is

called the class of wo-bandlimited functions in Lz(uk). It is clear
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that BO(WO) is the class of Wo—bandlimited functions in Lz(nll), and
Bk(WO)CBk+1(w0)' Also, BO(WO) is dense in Bk(wo) for every positive
integer k (see Lee, 1976b).

Zakai (1965) obtained a sampling representation for functions
in BI(WO)‘ Cambanis and Masry characterized Zakai's class Bl(wo)
and as a consequence sharpened Zakai's sampling expansion (see

also Piranashvili (1967} and Lee (1976a)).

Theorem 3.2.2. (Zakai (1965), and Cambanis and Masry (1976)).

If feBl(wo) and W > WO, then

(3.2.2) £(t) = ] f(om S o gl

= - w(ZWt-n ’ ’

and the series converges uniformly on compact sets.

Thus, functions in Bl(Wb) are reconstructed from their samples

using functions in BO(W), W> WO.

Remark 3.2.1. It should be noted that (3.2.2) holds for

W = W, if the Fourier transfom g of g(t) & [£(t)-£(0)]t ™ is

oo
W

such that g(w)(1 + e ") belongs to L[-Wy,Wy].

Lee (1977) proved an analogue of Theorem 3.2.2 for functions

feB, (Wy), k > 0.

Theorem 3.2.3. (Lee, 1977). If feBk(WO), W>W,, 0<B<W-W

0’
and ¢ is an arbitrary but fixed C”-function with support in [-1,1]

0’

and [ y(t)dt = 1, then

-00
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(3.2.3)  £t) = ¥ £&D “(zwi—r)sm T(2NEn) Tig(t - -B) , teR1
n§_m W W €

and the series converges uniformly on compact sets.

It should be pointed out that the function 5—1’2‘“%’%”3(—1 $8(+))
belongs to BO(W+B), W»> wo. Thus functions in Bk( )} are reconstruc-
ted from their samples using functions in BO(W+B), W> WO and
0 <8< w-wo. It should also be noted that the presence of the
(damping) factor @ in (3.2.3) cannot be eliminated, as (3.2.3) is
not valid for feBk, k =2 2. As a counter example consider
£(t) = t(feBy(W))); then £(5p) = 5; and the series in (3.2.2) does
not converge.

Campbell (1968) derived sampling expansions for the Fourier
transforms (as functions) of tempered distributions with compact
supports. If a tempered distribution F has a compact support and
e (t) = eZwitu’ then F(eu) is well defined, since eueCw for all ue]Rl.
In this case the Fourier transform f of F may be thought of as a func-

tion defined on HRl by ﬁ(u) = F(eu), uel]R1 (see Section 4.2).

Theorem 3.2.4. (Campbell, 1968). Let F be a tempered distribu-

tion with compact support and with Fourier transform f as a function

on Hil

, i.e. f(t) = F(et), telRl Let ¥ be a test function such
that y(u) = 1 on some open set containing supp(F), and let W > 0 be
such that the translates {supp(y) + 2DW}n#0 are disjoint from supp(F).
Then

(3.2.4) £(t) = ] £kt - ) »
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2ritu

where K(t) = 7% fe ¥Y(u)du , and the series converges for every

te]Rl.

Campbell's result does not require the support of F to be
symmetric with respect to the origin and is more general than Lee's
(Theorem 3.2.3) as functions in Bk(wo) have (distributional) Fourier

.transfonm with compact support in [-Wb,w ]. Campbell considered also
a sampling expansion similar to (3.2.3) when supp(F)c(-Wb,Wb),
W0 > 0, (for specific ) and derived an upper bound for the trunca-
tion error which was recently made more explicit by Lee (1979).

To establish notation, let y be a fixed but arbitrary function

in S whose Fourier transform ¢ satisfies the conditions

(i) ¢ is a symmetric test function supported by [—WO-G,WO+6],
0<§ < wO’
(i1) 9(t) = 1 for all te[-Wy,W,],

(iii) (1) < 1 for all td[-Wy,Wy) .

Then for all feLz(uk), the convolution fay exists and is a ¢”-function

in Lz(uk). If fcBy (W), then
£(t) = (Fay)(t) , teR!,

(see Lee (1976a), also Cambanis and Masry (1976)). The following

characterization of Bk will be needed.

Lemma 3.2.1. (Lee, 1976b). If feLZ(uk) is continuous, then

the following are equivalent,

(@) £(t) = W) (L) , teRL,

i i

[P W
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k1 £0) . g

® £ = ] Qo+ Egn), teR), and some geBy(Hy),
=0 3y ko

(c) the spectrum of f is contained in [-WO,WO] ,

(d) £ has an extension to an entire function satisfying
K 2mW, | Imz |

1£2)1 = ¢ (+1z)%e O, z¢C and some €, > 0.

The following result is a generalization of Kramer's sampling
expansion (3.2.1), in the sense that (3.2.1) is established for band-
limited functions feBl(wo) (:Bo(wo)), as well as of Zakai's sampling
expansion (3.2.2).

Theorem 3.2.5. Let feBl(WO) and W > Wo- Then for any bounded

linear operator T on Bl(W)

(3.2.5) [TE1(1) = § £GpITe It , teR',

n=-o©

where ¢n(t;W) = %%—ﬁ%ﬂ)— , and the series converges in Lz(ul)

and also uniformly on compact sets.

Proof. Fix feBl(wo) and W > WO. We first show that the converg-
ence in (3.2.2) is in Lz(ul) as well. From (b) of Lemma (3.2.1) we
have that f(t) = £(0) + tg(t) for all te]Rl, and some geBo(Wo);
hence by (3.1.1) we have

0= flg® - 1 glpe,(tm] e
n=- o

) £(530) -£(0)
= “mlti@)_ - fv(o)¢,o(t;W) - ngo%’-zw—— ¢n(t;w)|2dt
(3.2.6) 2 JI£(t)-£(0)-£' (0} (t;W)

2 [£(zp) -£(0)] 2 dt

—nfO nm(2Wt-n) sin m(2Wt-n) | I:?

e Jemepn

e
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. 1 1 -
Since —t . o + We-n by writing

n(t - iab

t[£(zD-£(0)] £(zp -£(0)

o sin a(2We-n) = (-7 mr——at(t;W)

m(t - _ZW)

+ [Egp-£(0)] ¢ (t;W)

in (3.2.6) we obtain

o £GP -£(0)
0 = [1£(t)-£(0)-£' (0)ot;W) - ngot(-l) —a7mw— %p(t:W)

(3.2.7) v Eme (t:W) - £(0)0, (0] dny (©)

Now (3.2.2) applied to g gives

£(70)-£(0)
(3.2.8) £+ ¥t _m___zw =0 .
ngo n

Also from the classical sampling theorem (see Zakai, 1965) we have

I 6. (W) =1, teR) .

= -0

N
For any positive integer N, let S?N(t) ) ¢n(t;MD. Then for
n=-N
any t 2 0

.29 ISN\@1 < 101 + 155" @1 + 15 O] -

Consider S9N(t) and let t be such that sin 2nWt 2 0. The successive

terms of S?N(t) can be written as

sin 2rWt _ sin 27Wt  sin 2nWt (-l)N sin 2nWt
2nWt * 7 m(Wte1) ’ m(2Wt+2) *CC T(2Wt+N)

and are thus alternating in sign and decreasing in magnitude. It
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.‘ follows that IS(_)N(t)] < ]S—;T?W-?lt-l <1 for all t > 0, and similarly

20t
for S(l) ] and STZWt]ﬂ‘ Thus for all N> 0 and t 2 0, ISI_QN(t)I < 3.

; The same result holds for t < 0. Thus |S§N(t)-1| < 4, and since

S?N(t) + 1 for all teﬂll, and uy is a finite measure, it follows by

the bownded convergence theorem that S?N(t) + 1 in Lz(ul). It then

s 1

follows from (3.2.7) that

0= [lIE(t) - I £ee, W] %au (0)

n= -00

. -
——

proving the convergence of (3.2.2) in Lz(ul). Since T is a bounded

linear operator on BI(W), and hence continuous, (3.2.5) follows with

the series converging in Lz(ul). Masry and Cambanis (1976) showed

o —— b -

that if hl,hzeBl(W), then

Iy (8)-h, (1) | < Ca+t%) % |h,-h, || , teR1
1 2 1721 2
L™ (g

[ S

which implies that (2.5.2) converges uniformly on compact sets. 0

Remark 3.2.2. As in Remark 3.2.1, we notice that if the Fourier

1 transform ﬁ of g(t) = [f(t)—f(O)]t-1 satisfies the condition:

e iU

: - "W, 11

! gw(l + e ) “eL7[-W ,WO], then (3.2.8) and thus Theorem 3.2.5
} i; remain true for W = W;.

For k = 2, (3.2.5) is not valid, since it is not valid when T is
; the identity operator (a counter example is f(t) = t which was mentioned
earlier). The following expansion for k 2 2 involves the derivatives

. of f at zero and the functions tjij+1(W0, 0<js k-2, and

b tk-1 sin 2nWt

it ¢ Bk_l(W), so that functions f‘Bk(wb) are reconstructed
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from their samples and the values of their derivatives at zero using

functions in Bj(W), 1<j<k1, W> WO' i.e. in Bkal(“n'

Theorem 3.2.6. Let feBk(Wo), k22, and W> Wb. If Tis a
bounded linear operator on Bk(W), then

(3-2.20) [TE1®) = [T 1)O + ] (EGD - pGp} 10,10 O, ter',
n ’

where

2 (3 . g(k-1)
£Y (0) tJ, fk-l(t) = fk-Z(t) + (0) k 1 sin 2mWt

f,(9) »
k-2 j=0  j! (k-1) ! “ZnWt

_ (2Wt k-1 sin w(2Wt-n)
%,k8 = D TEwmy

and the series converges in Lz(uk), as well as uniformly on compact

sets.

Proof. From (b) of Lemma 3.2.1 we have

k! (3) -
(3.2.11)  f(t) & T [f() - { f_.!.@_ ] = k& Do) + ¢ty

for some geBO(WO). Since F(0) = kf(k'l)(O), then by part (a) of Lemma
3.2.1 we have that FGBI(WO) and then by (3.2.5)

(3.2.12) F(t) = | F(zpo (W) , teR?

n=-o

where the series converges in Lz(ul) and uniformly on compact sets.

Then from (3.2.11) and (3.2.12), it follows that for all teR},

G219 10 = 0 + T IEG-g, 2EHEY T W
n

and the series converges in Lz(uk) and uniformly on compact sets.
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We notice that tJ'lij W), 1sj sk, since tj'leLz(uk) and for any
function YeS whose Fourier transform t'ﬁ is a test function with

. $(t) = 1 on [-W,W], and $(t) < 1 for all te|-W,W] we have

: Je-wlv@an = [dydu + ff flci)tj(-u)j"‘w(u)du
=

50 + ﬁlcbt’(-l)j’rfuj"l»(u)du
=

)+ % (i)tr(-l)j'r$(j'r)(0)
r=1

=t

We also notice that tk'ldan(t;W) belongs to Bk(W) by (b) of Lemma 3.2.1
since ¢ n(t;W) BO(W) for all n. Now since T is a bounded linear oper-

ator on Bk(W), and hence continuous, (3.2.10) holds where the converg-
ence is in L2 (uk) » and the uniform convergence on compact sets follows

by (c) of Lemma 2 of Masry and Cambanis (1976).

Example 3.2.1. The m-th derivative operator [D(m)f] t) = f(m) (t),

feBk(WO), m,k 2 1, is a bounded linear operator on Bk(wo).
Proof. Since feBk(WO), then by (a) of Lemma 3.2.1 we have
£(t) = [ f(wy(t-u)du

for any yeS such that @ is a symmetric test function supported by
[-W-§,W+8] for some 0 < § <W0, @(t) = 1 on [-WO,WO], and :'J\:(t) <1

? : on [-WO,W ]c. Hence, for all tisl,

: D™ 1 (1) = [ £ D™y t-udu
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1™ e |2 < [ 1€+ 1£0) [+ [ D™ y) t-w) |+ | D™y] (t-v) du av .

C
Since D(’")wes, m21, then |[D(m)w] )| < _ma%_n , for every n 2 0,
(1+x7)

and thus for n = k,

| [D(m) f] (t) IZ < C f ” |f(ull. lf(V)l du dv
m (1+ (-0 ) aremH*

EHOT R 11071 o M
e H¥as e HE &

o 2
(3.2.14) <Chy/ —(11%)_-‘11—)7)1;@ , teR! |

-00

o0

where Cﬁ,k = Cé K / "‘5%%15 , myk = 1. From (3.2.14) we obtain

Ko (1exd)

® 2
(3.2.15 [p™g(%, < [ —lfW] du dt .
L%(uy )

DA R FEROLICTRENES

Now we argue as in Lee (1973). Letting

- -]

dt
I,(w: =
kW= (t+t2) X1+ (t-w) HK

and using (1+u2) < 2(1+t2)(1+(t-u)2), we obtain

2
Ly s — L (),
ko1 7 (W)

and thus
2k-l

I I
G EI:;};FTT 1 (W

(3.2.16) < ’
(1rud)k
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since I;(u) s 1—;—:—2 (Zakai, 1965). From (3.2.15) and (3.2.16),

it follows that

Ip™eg) 2 < 2Kt )] : 0
2 m,k 2
l-lk “k)

From Example 3.2.1 we notice that if feBk(wo), then for any
W>W0,m21

f™ ) = M) + ], - £ G ™Mm , ter!,
n ?

where fk-l’ fk-Z’ and ¢n,k are as defined in Theorem 3.2.6.

We now obtain a convolution representation (which is a variation

of part (a) of Lemma 3.2.1) and an alternative proof of the sampling

expansion (3.2.3) for functions in Bk(wo), k 2 1. This result is

the analogue of (3.1.1) for functions in Bk(wo), k=21.

Theorem 3.2.7. Let feBk(Wo), W WO, and 0 < B < W—WO. If v
is an arbitrary (but fixed) test function with support (y)cf-1,1]

and [ y(t)dt = 1, then

£(1) = [ £(u) SAEE Gia(t-w)au
|1 G sinoen) Jact- ) 5 teR,

and the series converges pointwise everywhere.

Proof. Fix chk(WO), W > WO, and 0 < B < (W—WO). Then for all
selRY, £(-)9(B(s-+)) belongs to LZ(RY). Indeed, for all zeC,
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~ 1 - 3
b(e2) = [ wwde gz g,
and integrating by parts n times, we obtain

1 .
(-ZniBz)nﬁ(gz) = { w(n)(u)e-2ﬂleu d

Thus for any n > 1 we have

. 2n8| Imz|
12|"5(82) < > ;)n e 1 o™ ) ldu
i
and hence
2nR| Imz|
R C g€
(3.2.18) |p(Bz) | < D -
(3+|z|)

It follows that for every SeIRl,

(o] A . 2
S b ke s ¢ [ IO g

"o (1+[s-t])
< ZC B(1+] |)2k[J£§-t%J1(-dt<m
o (1+t%)

(since (1+¢5)% < 2X(1+1s) K1+ 1t-51) 2K for all t,s¢R)). Also, by
by (d) of Lemma 3.2.1 we have

2aW. 11 z]
€@ = qOsizhe O™ e

and by (3.2.18)

AN e2n(w0+3)|1mz|

[£(2)8(8(s-2))| s C,C
(1+]s-z|)

k,B

2n(W,+8) |12
< & gQslshke 0T

for all seR! and z¢¢ (since (1+1zDX < (1+1sD)¥(1+1s-21)%). Thus
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by the Paley-Wiener Theorem, we have that for all Senll, f(-)&(s(s--))
belongs to BO(WO+B). Since W0+B < WO+W~W0 = W, by (3.1.1) we have

that, for all t,seR1,

F(U(B(s-0) = [ ) SPATIEN yig(s-w))au
(3.2.19) =3 f(f%) s1irn wgﬁt-ng»l (B(s- _Z_WQ)) ,
n= -

and the series converges uniformly on -« < t < », Now putting

s =t in (3.2.19), the required representation (3.2.17) follows. 1[I

3.3. Bandlimited in Lloyd's Sense.

Our goal in this section is to obtain sampling expansions for
bounded linear operators acting on classes of functions and stochastic
processes bandlimited in Lloyd's sense. Lloyd (1959) extended the
concept of '"bandlimitedness' by allowing a 'bandlimited" function to
have a wandering, rather than compact, spectrum. An open set veR1
is called a wandering set if there exists a real number W > 0 such
that all its translates {V+2nW}, neIN, are disjoint. Lloyd derived
a sampling expansion for wide-sense stationary processes whose
spectral distributions F have wandering supports, and also proved

that if ZWO is the Lebesgue measure of supp(F), then Wo < W,

Theorem 3.3.1. (Lloyd, 1959). Let {x(t), tenll} be a measurable,

second order, mean-square continuous, wide-sense stationary stochastic
process, and V be the support of its spectral distribution F. If, for
some fixed number W > 0, the translates {V+2nW} of V are all disjoint

then
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N
(3.3.1) x(t) = éiﬂ nZ-N(l - %%%JX(E%DK(t - 7%) R teDQl ,

where K(t) = =t [ e ®au , teR!, and if, furthermore 1im sup|tK(t)|< =,
A teR1
then
? n n 1
(3.3.2) x(t) = lim XGDK(t - 58 , teR!
pm L X W

where the convergence in both (3.3.1) and (3.3.2) is in the mean square

sense.

Lee (1978) extended Lloyd's result to functions in Lz(uk)
with wandering (distributional) spectra, and to non-stationary processes
whose correlation functions have (distributional) spectra. Before .
stating Lee's results we introduce the following notation. Let
x = {x(v), teﬂll} be a measurable stochastic process with correlation

function R(t,s) = E[x(t)x(s)], t,SeDRl, which satisfies
(3.3.3) / R(t,t)du (t) <=, k20,

where duk(t) = E;—%igg dt. We may define an operator R on Lz(uk) by
+

[REI(t) = [ R(t,s)f(s)duk(s). R is a trace class operator, with non-
zero eigenvalues {Ak}z=1 and corresponding eigenvectors {fk};:=1 .

Cambanis and Masry (1971) obtained the following representations for

x and R:

(3.3.4) x(t) = ] £ (8¢, teRR! ,
k=1

where the series converges in the mean square sense and also in Lz(uk)

a.s., and {g;}, forms an orthogonal basis with E|£;k|2 = ) for the
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Hilbert space H(x) generated (in the mean-square sense) by the random

variables of the process x, and

(3.3.5) R(t,s) = kzlxkfk(t)fk(s) , t,seR!,

where the series converges absolutely and in Lz(uk).
Remark 3.3.1. Since R satisfies (3.3.3), then

®© o 2 ~
[ [ R(E’S% 7K dt ds < «, and hence the Fourier transform R of R
- - (]+t7+s5%)

exists as a tempered distribution in the Sobolev space HZ’-Zk(IRZ)
(see Tréves, 1967). If the support of R is contained in an open set
V whose translates by (2nW,2nW), for some W > 0, are all disjoint,
then (Lee, 1978) for all k, supp(%k) = {y: (y,y)esupp(ﬁ)}cv0 =

{v: (v,v)eV}, and the translates of Vb by 2nW are all disjoint.

Let U, be an open set such that supp(%k)cUOCchvo, let y be a C -

0

function that equals 1 on U, and 0 on V¢, and |y(t)| <1 for all teﬂll,

and let the function K be defined by

(3.3.6) KO = o [ e ™Myu)du .

Theorem 3.3.2. (Lee, 1978). Let feLz(uk), and suppose that there

exists an open set V:supp(?) such that for some fixed W > 0 the trans-
lates {V+2nW}, neIN, of V are all disjoint. Let U be an open set such
that supp(?)cUcﬁtv, Y be a ¢”-function that is 1 on U and 0 on VC,

and K be the function K(t) = 7% ] eZmitu y(u)du . Then

(3.3.7) £(t) = ] £(K(t - 5p , teRT,

n=-c

where the series converges pointwise everywhere.

e v aendkad




63

[ Theorem 3.3.3. (Lee, 1978). Let {x(t), tean} be a measurable,

i‘ second order, mean-square continuous process with correlation function
R which satisfies (3.3.3) for some non-negative integer k. Let V be
an open set such that supp(ﬁ)cv, and suppose that, for some W > 0,

the translates {V + (2nW,2nW)}}, neIN, are all disjoint. Then for each
LelRl,

. (3.3.8) x(t) = [ x(pK(t - 0,

. 1 = =00

where the series converges in quadratic mean and almost surely, and

K is defined as in Remark 3.3.1.

E* - We now generalize Kramer's expansion (3.2.1) to bandlimited func-
tions with wandering spectra and Lee's expansion (3.3.7) (the case *

k = 0) to bounded linear operators acting on the space Lk(U,VﬁhD

which is defined as follows. Let U be an open set in H21 such that
for some open set V 2 U and W > 0 all the translates {V + 2nW}, neIN
are disjoint. The class of all functions feLZ(uk) with supp(%)cU

is denoted by Lk(U,V;W), and simply by Lk(U) when the set V is not

[ RS- U

required to have the properties stated above. Since the translates of
U are disjoint, its Lebesgue measure is finite (Lloyd, 1959), for
k =

0, felX(RY) n LE(RY). 1t follows that

i
;
|

1 (3.3.9) £(t) = [ ™™ Ru)du , a.e. ,

i

and thus every function in LO(U;V,W) has a continuous version. Only

continuous versions will be considered in this section.

Theorem 3.3.4. If T is a bounded linear operator in Lz(n%) such that T

maps LO(UO,VO;W) into LO(UO,Vb;W), and K is defined as in Theorem 3.3.2,
then for every t(IRl,
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(3.3.10) [T£1(8) = | £GGIKC- - 71D ,

n=-w

and the series converges uniformly on BQI as well as in LZ(BRI).

Proof. Define the function F by

Fw) = § P(u-2mW) , ueR) .

m=~o
F is the 2W-periodic extension of £, and / |F(u)|2du =
Ty
where Iw = (-W,W). Thus from the Lz-theory of Fourier series, F has

2
€11

the Fourier expansion
n

N -mi WY
(3.3.11) F(u) = 1lim ) Cpe ,
N#o n=-N
in LE(-W,W), where
. N
L - u
W
C, = 2—‘}1 If F(u)e du
W
. N
1 Tl W u
= = [ _ F(ue du (U =U+2miN)
Lo )
. N
ml v U
=1 [ Rw-oe " au
m IwnUm
. N
M1 g U
=D [ Rwe "
m IwnUm-ZmW

But the scts (IwnUm) - 2mW = (IW - 2mW) n U are disjoint and their

union is U, so that

(3.2.12) €, = 7

B Bl g b 0 i bl A Do
o SIS : " pvCTrvr T TT—
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We notice that for any geLo(U,V;W),
-~ 2 3 1
(3.3.13)  lg(®] < [lawe™ M au < |u¥gll , .,
U L (RR7)
where |U| is the Lebesgue measure of U; i.e., the evaluation map
on LO(U;V,W) is bounded with norm < ]Ul%.

Now consider the error

N
ey(t): = [[TEI(Y) - szcz—x)[TKc--z—ﬁ)lct)l

n=-

in

. N
ul’é||Tf - £ [TK(e - 52
| I II nZ-N ZW)[ ( Zw)]lle(IRl)

A

L Aad N
W [ 18 - T Sk - | %dt}?
-00 ns-

i

==

IA

N 1 n, u 2
Z -ZW f(m—)e | du

NKIGIINHOR
U n=-N

N -1i Sy
2 2.1k
@I o fme V|
vV-U n=-N

IA

- N
=Tl U

N
UEITHfIF@W - § Cpe
] n=-N

N -mi Tu
(3.3.14) s L 1) ce Mo PR
V-U n=-N
By (3.3.11) and noting that F(u) = 0 on V-U, it follows that the
right hand side of the last inequality in (3.3.14) tends to zero

independently of t, then eN(t) converges to zero uniformly in t on

r1, 0

We now consider the stochastic analogue of Theorem 3.3.4 for

processes bandlimited in Lloyd's sense which are not necessarily
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stationary. To fix notation, let x = {x(t), te]Rl} be a measurable,
second order, mean-square continuous process with correlation func-

tion R which satisfies (3.3.3) for k = 0. Assume that V is an open

set in IRZ such that, for some fixed W > 0, the translates {V+(2nW,2nW)},
neN, of V are all disjoint, and let U ¢ V be a fixed open set in IRz.
1f supp(ﬁ) c U, then almost all sample paths of x belong to
LO(UO;VO,W), where U, = {u: (u,u)el} and Vo = {v: (v,v)eV} (Lee, 1978).
It then follows from Theorem 3.3.4 that if T is a bounded linear oper-

ator in L?‘(IR 1) such that T maps LO(UO,VO;W) into LO(UO,VO;W), then with
probability one

(3.3.15)  [x](t) = [__xGOITK(- - zD1(1) , teR!,

1, as well as in LZ(IRl).

where the series converges uniformly on IR

We show that under appropriate conditions on the operator T
(Theorem 3.3.5) or on the correlation function R of the process x
(Theorem 3.3.6) the expansion (3.3.15) converges also in quadratic
mean.

Let T be a bounded linear operator in Lz(lRl) of integral type
with kemnel SeL?(R%):

(3.3.16) [TEI(t) = [ S(t,wEWdu a.e., feL’(RY) ,

and assume that the kernel S satisfies the following conditions:

(i) S(t,*)eL*(RY) for all teR!

and t —S(t,+) is a contin-
uous map from ]R1 into LZ(]RI), so that each Tf has a

continuous version for which (3.3.16) holds for all te]Rl.
(i1) Se[Ln(Uq:Vo,W) © L (UsV-,W)] © [LE(RY) o L.(US)]; so
0‘o’'o’ o0’ o 0o’
that T maps LO(UO;V,W) into LO(UO;V,W), (note that
Cy _ gdpy .
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(iii) [ (1+ud)|S(t,u)|du < = for all teR!

Since the sample paths of x belong to LO(UO;VO,W) a.s., we have with
probability one

’ g

(3.3.17) [Tx(+,w)1(t) = [ S(t,wx(u,w)du , for all teR!

and we now show that under condition (iii) on the kernel S of T, the

series in (3.3.15) converges also in quadratic mean for each teRL.

Theorem 3.3.5. Let x = {x(t), te]Rl} and T be as defined above.
Then

(3.3.18) [Tx}(t) = I X(mpITK(C - 91D

n=-o

where the series converges in the mean square sense for every te]R1

’

and K is as defined in Remark 3.3.1.

Proof. Recall the expansion (3.3.4) of x where the series con-
verges in Lz(lRl) a.s. Since almost all sample paths of x as well as
all fk belong to LO(UO;V,W), (Lee, 1978), and since T is a continuous

linear operator on LO(UO;VO,W) , it follows that with probability one,
[}
(3.3.19) Tx](®) = [ [TH] (05

in Lz(lRl) and also pointwise everywhere by (3.3.13). Thus, for

every telRl, we have

N )
2 2

E|[Tx}(t) - Tf, 1(t)& E Tf, ] (t
i) -} ITRI0G % < Bl [ [TRI®g]

= Tf . Tf E 3
e p=bZml[ 1 (O ]+ [T (0) [E(5,E)

° 2
M| TR ()] .
k_£+1 W TR




But by (3.3.13)
2 2 2
Hre 1 (012 < WHITEI1%, | < UHITHAHIENE,
L*(R™) L°(R™)
2
= JudiT)? .
Thus for every teIRl,
N 2 P
EI[TX1(8) -} [TEIE ] < [UHITIZ ] A >0 as N>,
k=1 k=N+1

and the series in (3.3.19) converges in the mean square sense, for

each te]Rl.

Now consider the mean square error

N
ey(®): = BT - | xCa) (K- - 112, ter! .

Making use of the convergence of the series in (3.3.19) in quadratic

mean for each teIRl, we obtain

N
ex(® = [M1(®)]% - ] (E(Tx) (03X [TRC: - 1) ]
n=-

? E([TX] (1) X)) [TK(* ~ 50 1(t)
-n=-N [X xzw)[ W

N

N
e mZ_NE(x(fwﬂ)i(z—&))[TK(- - IO TRC - 7910

v 2 N N, cer n
= 1(glxk{lrrfk](t)l - 1 ITRIMFE GPITRC - 1)

n=-N
N n n
- ZN[T?kl (O£, ) [TKC - 5D 1(0)
n:-
’ . + ? ? £ (T G [TK(s - 5m 1) [TRC - 5 1(8)}
- IR 1 Y W W

© N
G320 = I RITGI® - 1 GEIC - IOI° .
= n-~
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We have

N
o k(®F = HTRI® - 1 £, G [TKC - 5D 1(0) ]

o«©

n
[ 1St w ] £ - ng_ka(z{s)x(u - 7 lau

-0

IA

o0

= [ Istw -] S B et WVay
—o0 UO
N R gV 0
B E (] fk(v)e dV)K(U - 2—W)|du
n=-N ﬁo
s [ sl f 15w [efm
Yo
N i % v n
(3.3.21) - ) e K(u - W)ldv)du .
n=-N

For every uelRl, define ¢>u(v) = X:=_mw(v+ZnMe2"i(V+2nw)u (Lee,
1978). Then for each UelRl, %y is a periodic ¢”-function with Fourier
expansion

i

o, = I Klu - zde ,

n=-w

=D
<

where the series converges uniformly on -» < v < »,  We have

. n
) ™oz v
gy(u): = sup IeZMW - ) K(u - PN W |
N L W
VeU0 n=-N
. n
N L o V
n W
s sup o . (V) - 1 K(u - me I
vde u n=-N 2w
. n
Moz v
n W
= sup_| K(u - smpe |
veR! |n}>N oW
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< K( - 2 ’
XN' u Zw)l

In|>
and since KeS implies [K(u)| < Cz for some C > 0 , :
1+u ;
j
1 @ <C 1ty ;
|n[>N 1 + (u- W
=
Bl
3 < 20(1+ud) —~
g In[>N 1+ ()
1 16wc .. 2 1
vi s—-—ﬁ—-(1+u),udR . ]
[ j From (3.3.21) we thus have,
' . hd ~
eN’k(t) S_L |S(t,u)|eN(u)dué |fk(v)|dv
0
16W2C (11 1% 1 a2
s = 1Upl? [ (wu®)[s(t,u)|du .
! It follows from (3.3.20) that for ail teRl,
2 ) Uy I (16W2C) % ®
| ex(t) € —————( T A) [ (1+uY)[S(t,u)|du>0 as N>
| N k=1 © -o
by property (iii) of S, and thus the series in (3.3.18) converges in
E
k! the mean square sense. 0
& It should be noted that the integral type operator T was defined
X
3 on all feLZ(IRl) since K ¢ LO(UO;VO,W). However, one could take the

¢”-function ¢ (of Remark 3.3.1) equal to zero on A® for some open set
A such that Uy ¢ A ¢ V. In this case KeLy(A;V,W), and it would
| suffice to define the integral type operator T on LO(A;VO,W), rather

than on LZ(RI) (also conditions (i) and (ii) would need the obvious

modifications).

A A A L L R A
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Under further conditions on the process x, (3.3.15) converges

in quadratic mean for all bounded linear operators.

:3 Theorem 3.3.6. Let x = {x(t), telRl} be as in Theorem 3.3.5,

and in addition assume that

1) [ 1+tHRED dt < =
(i) ] 1+ Y R < = .
n=-o

Then if T is any bounded linear operator in LZ(DQI) which maps

LO(UO;VO,W) into LO(UO;VO,W), (3.3.15) holds where the series converges

in quadratic mean for every teﬂil.

3 g Proof. Notice that by (3.3.20) we have

2 2 % n n
. eg(t) < ||T M E - £ G K - sl
| N T kzl IR |n|§Nk W W 2 g1,

. - IITIIZk_Z__IAk_O{ at{[£,(0)% - k(t)lnlgNr(ﬁ%)m -

- T (1) £, GOK(t - 59)
k |n|§N k'2w W

n m o
"ol ey kP E@WKCE - R - )

It follows by (3.3.5) and monotone convergence that

ToetMy J 16, ()%t = [ R(t,0)dt. By (3.3.4) we obtain
/ R(t.ﬁ)f(t - %)dt = §{ [ x(©)K(t - z—w)dt';(i%l)}

“FLL & [ fORE - s dt] L BACLN)
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-5 (I L
kzl)‘k_fk‘zw)-o{ fk(t)l((t ZW)dt ,
and thus (3.3.22) can be written as follows:

2

ex(® < ||1]|% f | [R(t,t) - |n|§NR(t’ Kt - 7]
o L
|n|£ [RGz»t) - |m|§NR(2“" Kt - ) ’
(3.2.23) - K(t - m)dt . |

But by Theorem 3.3.3 we have for every t,SEIRl

R(t,s) = ] R(t, z)K(s - 7 ;
n=-oo

substituting in (3.3.23) we obtain

ev® s [THA [ T IRG, AlIKCE - ) lde

o [n|>N

) 2 IRGs m)l I IK(t - P le1K(t - pldt} .

[n]|sN |m|>N
Cx
Since KeS implies |K(t)| < E~——7—F for each k = 0 and some Ck> 0,
1+t%)

and IR(t,s)| s vR(t,t) * /R(s,s), we have that the first term on the

right hand side of (3.3.24) is less than

2, [1T1120 [ () REG T dt) { RG/H, /], g as N + =,
- In[>N 1+ (3

by (ii). For the second term, notice that




e e e

X ¥ i B
T A EhChY
DRSS St L

- S NS

A B i i .t

73
- = [1+ () .
1Kt - 5D [ [K(t - s [dt < 8C,C, | W 1 _(Qst)
o P1] P 125 (1et5)2 [1+(_2%7) :

2]2

dt

Thus the second term on the right hand side of (3.3.24) is less than

n, 2,2
- ’
8C1C2(|n|£N(1 + () VR(G/ 2y, (0/2M)) ]

YRC(m/2WY, (m/2 +0 N &
(lml>N - (-2—&-)2 @] as ’

by (ii) and the result follows.

It should be noted that when R(t,t) is asymptotically monotonic

at o then conditions (i) and (ii) of Theorem 3.3.6 may be replaced by

/ (1+t4)./§(t,t5 dt < =,
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CHAPTER IV

Sampling Expansions for Distributions and

Random Distributions

4.1. Introduction.

This chapter is concerned with sampling representations for

distributions and random distributions. The need to consider dis-
tributions (beyond classical functions) arises from the fact that in
many physical situations it may be impossible to observe the instan- ]
taneous values f(t) (of a physical phenomenon) at the various values
of t. For instance, if t represents time or a point in space, any
measuring instrument would merely record the effect that f produces
on it over non-vanishing intervals of time I: [f(t)¢(t)dt, where ¢
is a "smooth" function representing the measuring instrument, i.e.
the physical phenomenon is specified as a functional rather than a
function. Furthermore, it is becoming exceedingly clear that the
tools and techniques of the theory of distributions are useful in
investigating certain problems in many applied areas. It is thus of

interest to consider distributions beyond functions.

4.2. Notation of Basic Definitions. i

Let C: = CZ(IRI) be the class of all infinitely differentiable
functions with compact support. A topology t is introduced on
the linear space C: which makes it into a complete space: C:9¢n + 0
in © if therc exists a compact set ARl which contains the
support of every ¢ and for every non-negative integer k, ¢£k)(t)

+ 0 uniformly as n + o, C: with the topology T is denoted
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by D, and its elements are called test functions. The members of the
dual D' of D are called distributions, and the value of a distribution
feD' at a test function ¢eD is denoted by f(¢). A (weak-star) topo-
logy on D' is defined by the seminorms |f(¢)‘, feD', as ¢ varies -
over all elements of ?; thus, D'Bfn+ 0 weakly whenever fn(¢) + 0 for
all ¢eD.
The class S of rapidly decreasing functions consists of all

infinitely differentiable functions (¢ecm) for which
m_ (k) o -
[t (W <€y s =<t

for all non-negative integers m,k. A topology on S is defined by the

seminorms

Hq)llm k = sup sup {(1+|tl)kl¢(n)(t)l} ’ m’k = 0’1’2""’
> O<nsm teR1

i.e., a sequence {¢n}:=1 is of functions in § is said to converge in S,
if for every set of non-negative integers, the sequence
{(1+|tl)m¢£k)(t)}:=1 converges uniformly on ﬂQl. S is complete, and
the dual S' of S is called the class of tempered distributions. Simi-
larly, a (weak-star) topology is defined on $' by the seminorms |[f(¢)],
feS', as ¢ varies over all elements of S, i.e., fn converges in S'
if fn(¢) converges for all ¢eS. The space D'(S') is (weak-star)
sequentially complete, that is, if {fn}n is a sequence in D'(S') such
that {fn(¢)}n is a Cauchy sequence for every ¢¢D(S), then there exists
a distribution feD'(S') such that fn + fin D' (8").

Finally, the space ¢” with the topology defined by the seminorms

poa@ = T swle™m| , e,
’ O<nsm teA

where A ranges over all compact sets in D21 and m over all non-negative
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by D, and its elements are called test functions. The members of the
dual D' of D are called distributions, and the value of a distribution
feD' at a test function ¢eD is denoted by f(¢). A (weak-star) topo-
logy on D' is defined by the seminorms |f(¢)l, feD', as ¢ varies
over all elements of D; thus, D'th* 0 weakly whenever fn(¢) + 0 for
all ¢eD.

The class S of rapidly decreasing functions consists of all

infinitely differentiable functions (¢e@m) for which

m (%) )1 <
It (D] s C

-0 < t < o

K’

for all non-negative integers m,k. A topology on S is defined by the
seminorms
Hollyx = sw  sw (At e™ @, nk=0,1,2,..,
" Os<nsm teR1
i.e., a sequence {¢n}:=1 is of functions in S is said to converge in S,
if for every set of non-negative integers, the sequence
{(1+|t|)m¢£k)(t)}:=1 converges uniformly on R S is complete, and
the dual S’ of S 1is called the class of tempered distributions. Simi-
larly, a (weak-star) topology is defined on S' by the seminorms |f(¢)],
feS', as ¢ varies over all elements of S, i.e., fn converges in S’
if fn(¢) converges for all ¢eS. The space D'(S') is (weak-star)
sequentially complete, that is, if {fn}n is a sequence in D'(S') such
that {fn(cb)}n is a Cauchy sequence for every ¢¢D(S), then there exists
a distribution f¢D'(8') such that fn -~ fin D' (8").
Finally, the space ¢” with the topology defined by the seminorms
Poa@ = I swle™m] , e,
’ Osnsm teA

«vere A ranges over all compact sets in BRl and m over all non-negative




integers, is denoted by E.

The Fourier transform F(F(¢) = $, ¢eS) is a one-to-one bi-

contiiruous mapping from S onto itself. If feS', the Fourier trans-

form £ of £ is defined by £(¢) = £(§), ¢S, and is a tempered dis-

tribution. If feS' and ¢eS, the convolution fx¢ is defined as a

function on HRI by

(£2) (1) = £(r, ) , teR1,

where ¥(t) = ¢(-t) and the shift operator Ty is defined by (rt¢)(u) =

¢(u-t). f*¢ec” has a polynomial growth and thus determines a tempered

distribution.

Suppose feD', f is said to vanish in an open set Uc]R1 if f(¢) =0

for every ¢¢D with supp(¢)<U. Let V be the union of all open sets

UeR1 in which f vanishes. The complement of V is the support of f.

Distributions with compact supports are tempered distributions. Now

’

if f is a distribution with compact support (i.e., feS'), then f

extends uniquely to a continuous linear functional on E. If YeD is
such that y(u) = 1 on some open set containing supp(f), then yf = f
i.e. (WD)(9) = £(49) = £(6) for all ¢cS, but since e (u) = 2T U

is a Cm—function, f(et) = f(Wet) exists, and the distribution f is

generated by the function ?(t) defined on R! by

(4.2.1) Bt = fe,) -
Indeed
(4.2.2) F= @ ,

and (wf)A (and therefore %) is generated by the € -function (?h@)(t)
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which has a polynomial growth (see Rudin, 1973, p. 179). By choosing

¢eS such that ; = y, we have

L2 id

(B (1) = () () = E(1,9) = £(r,)")

£(e d) = flve,) = f(ey) ,

and from (4.2.2), (4.2.1) is justified. Hence the Fourier transfomrm
of a distribution with compact support may be thought of as a function
defined on R by (4.2.1). 4
Let (Q,F,P) be a probability space. A random distribution is a
continuous linear operator from D (or S) into a topological vector
space of random variables. Specifically, a second order random

distribution is a continuous linear operator from D (or S) onto

LZ(Q) = LZ(Q,F,P), the Hilbert space of all finite second moment

random variables.

4.3. Sampling Expansions for Certain Distributions.

In this section we establish a sampling theorem for tempered
distributions whose Fourier transforms have compact supports. A
distribution feS' is said to be W-bandlimited, W > 0, if supp(%) c
(-W,W). The class of all W-bandlimited distributions will be denoted
by B(w).

Let D[-W,W], W > 0, be the class of all ¢”-functions ¢ with

supp(¢) < [-W,W], and define Z(W) & D[-W,W] = {$eS: 0eD[-W,W]}.
Pfaffelhuber (1971) stated that if HeBY(W) and h is its Fourier trans- .

form (defined as a function on Hll), then

. sin m(2Wt-
(4.3.1) JORINRC: i)




78

and the series converges absolutely in Z'(W) (the dual of Z(W)).

(4.3.1) means precisely that, for every ¢<Z(W),

[h(o(tidt = [ higp [ ZRAEEN) g(eyge

and the series converges absolutely. Campbell (1968) had already

noted that (4.3.1) does not hold pointwise for arbitrary bandlimited

distributions. Though (4.3.1) is correct, the arguments presented in

its proof are not convincing.

The following lemma is a modification of Lemma 1 of Pfaffelhuber

(1971), and will be needed in the proof of theorem 4.3.1.

Lemma 4.3.1. Let feS' be such that % has compact support. Let

Il be a closed set properly containing supp(%), and ¢ any test function

. with support E and y = 1 on some open set containing supp(?). Then

f is uniquely determined by its restriction to ﬁ(E), i.e., the values

£(6), 6eD(£), by

(4.3.2) £(¢) = f(Yrd) , ¢eS .

The shift operator Ty is defined on D'(S'), for every lean,

by

(1, D) (0) = £(1_10) , 6eD(S) .

A distribution feD'(S') is said to be periodic with period T > 0, if

(4.3.3) (TTf)(¢) = f(¢) , for every ¢¢D(S) ,

and T is the smallest positive number for which (4.3.3) holds.

We now state and prove our result.

......................
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Theorem 4.3.1. Let feS' be a tempered distribution such that

T has compact support, and let the closed set E and W > 0 be such
that E 2 supp(}) and the translates {E+2nW}, n # 0, are disjoint
from supp(%). Let a and y be any test functions such that y has

support E, and a = 1, y = 1 each on some open set containing

supp(%). Then
(4.3.4) f(9) = I flr a)(x K@) , ¢eS ,
=W oW
where K, (t) = i%‘{ ¥ ™My (u)du and Ky(¢) = [ K, (D6(t)dt, geS.
1f £BI(W), then
(4.3.5) £(9) = nz_wf(ri&) (T__IlGW) (%) , ¢eS .
W oW |
where G, (t) = LI and g (¢) = [ G(D)e(D)AL , 4eS.

Proof. We first show that the sequence of partial sums

SN = ZQ=_NT_2nwf y N2> 1, converges in S'. For any ¢S, j

N .
SN = 1 (1) (@)

n=-N

N .
] Frp)

n=-

~ N
£( )
nZ-N Tonw?

~ N
(4.3.6) f(g ) Tan¢) ,
n=-N

where £¢D is a test function such that £(t) = 1 on some open set

containing supp(f). We now show that the sequence
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@N(t) = E(t)2§=-N ¢(t-2nW), N 2 1, converges in S. Since ¢eS,
there exists a constant B > 0 such that |¢(t)]| < B(l*rtz)’1 for all
tean, and thus

2

B < 2B __115__7

loCt-20) | < —2—7
1+(t~2nW) 1+(2nW)

Since &eD, we have supp(g) < [~C,C] for some C > 0 and |E(t)| < A
for some A > 0. It then follows that for all teﬂRl and non-negative
integers m,

N
(4.3.7) (1+thH" ()] ZN|¢(t-2nW)|
n=-

<¢D,

< 4B(14O)"(14CY) ] —L1—
n=- 1+(2nW)

i.e., the sequence of partial sums on the left hand side of (4.3.7)

_ converges uniformly on H(l. Hence the sequence (1+|t|)m¢N(t), N21,
converges uniformly on DRl for every m = 0. Similarly, it can be

shown that for every m,k > 0, the sequence (1+|t|)m¢§k)(t), N21,
converges uniformly on BQl, i.e. {¢N}, N21, converges in S, and since S
is complete, its limit ¢ belongs to S, and °N + % in S. It follows

from (4.3.6) that
Sy(@) = F(o) > £(®) , as N+ =

and since S' is (weak-star) sequentially complete, then there exists

a tempered distribution FeS' such that Sy~ F in S'.

Therefore, F = lim § = - T_an? is a periodic tempered
Noco

distribution with period 2W. It follows that F has the Schwartz-

Fourier series (Zemanian, 1965, p. 332)
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(4.3.8) F= ] v, f=7 a_e_ ,ins',

nz-co n=-co -Z—W— m
_ 2mitu
where et(u) = e , and
a = =i F(Ue )
_n 2N S
W W

where UeuZW is a unitary function (Zemanian, 1965, p. 315), i.e.

UeD and Z:z_wU(t—ZnW) = 1 for all te]Rl. From (4.3.8) we have

Ma = Z-m(T_mef) (Ue )

w "W

W

Since f has a compact support and UeD, then there is only a finite

number of non-zero terms in the last summation, and hence

Wa =£([] T, Ul

)
L .\
m= W
(4.3.9) = f(e ) = f(ae D= fr o) .
] oW T W
From (4.3.8) and (4.3.9), we have that
(4.3.10  E®) = [ i f( de (8) , 00(E) ,
n=-e W W
o i %u n
where e n(6) =[e 8(u)du = 8(- 7w+ Thus

W -00

n=-o

(4.3.11) £B) = £0) = | o £(0 DGR , 8DE) ,
w

nl

e
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and by Lemma 4.3.1 we have that for every ¢eS .

(4.3.12) £(0) = £(ba0) = 7 ] f(x n&).(ﬁ*cp) )
n=-c W

v
(since yx¢ = (y$)" ¢ D(E)). But

(%) G = | Vo - D(t)dt
= W [ Kt - i%)cb(t)dt

(4.3.13) =W KJ(@) , ¢eS,
w

and (4.3.4) follows from (4.3.12) and (4.3.13).

To prove (4.3.5) notice that when 8eD[-W,W],

W rni %u
e (8) =[e 8 (u)du
n W

w .
sin w(2Wt+n) 2
zw-v;; —“—m%ﬁfrle(t)dt

(T ncw)(é) )
T W

3

It follows from (4.3.10) that for ﬁeﬁ[-W,W],

£8) = 2(e) = | f(xr @ GY®) ,
=W W

and (4.3.5) follows by Lemma 4.3.1.

Theorem 4.3.1 shows that a tempered distribution f with compact
spectrum can be reconstructed via (4.3.4) from its values (samples)

at the translates of an arbitrary but fixed test function a which
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equals one on some open set containing supp(?). On the other hand,
if we denote %(et) by f(t), then from (4.3.9) we have
f(x ) = %(e—ﬂ) = £(z0) , and (4.3.4) reads
2W 2W
£(¢) = nz_mfci%a(riafw)(¢) ) 9eS

so that a tempered distribution f with compact spectrum can be recon-
structed using the samples of the function f(t) = %(et).

We now show that the sampling theorem for tempered distributions
with compact spectrum includes as special cases the sampling theorems

for conventionally bandlimited functions (Example 4.3.1) as well as

for bandlimited functions in Lz(uk) (Example 4.3.2).

Example 4.3.1. (Conventionally bandlimited functions). Let

feLz(IRl) be a continuous function such that f has compact support

E. Then f determines a tempered distribution:
(4.3.14) £f(¢) = [ £f()o(t)dt , ¢eS ,

and its distributional Fourier transform (denoted also by %) is

defined by %(¢) = f(&), ¢eS, or equivalently by
£(o) =/ Ewe(wdu , ¢es .

f (as a tempered distribution) is supported by E. Hence (4.3.4)

applies and, if W > 0 is defined as in Theorem 4.3.1, we have from

(4.3.14)

. [} i =z u n
f(r @) = Be D= e du = £(zp) .
] w v

=
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For v > 0, define the function

1 - t
C\) exp{;"—'-l(—t?} for Igl <1
W

o, (1) =
t oy
0 for I\)l ,
where C_ = [ expf———s}dt. For each v > 0, ¢_e¢D and [ ¢_(t)dt = 1,
Voo 1_(3)2 v AR .
\Y) 3

and for each continuous function g and every te lRl,

[+

] g(we (t-u)du ~ g(t) as w0, From (4.3.4) we thus have that

for each teIR1 andv >0

(4.3.15) [ fwe (t-wdt = [ £ [ Kylu-zDe, (t-w)du . |

n=-o

Since f and Kw are uniformly continuous, we have for each fixed 1:.:1111
and nelN

j'mf(u)‘bv(t-u)du + f(t) as v¥0 ,

Kyl - ey (e-udu > Ky(e - 5

Now by Theorem 24 of Lighthill (1958, p. 64), if for any sequence

-]

{b } which is O(n) as n + =, ¥ is absolutely convergent

n=—°°bnan,v

and tends to a finite limit as v + 0, then

(4.3.16) lim ) a = J lima .
w0 n=-o Y prwysg VY

But, for cach fixed te]Rl,

0y Y . -
iahiibtabhnitinic, btk N, Lme e e S O
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[« ]

L _Iby £ [ Kylu -z, (t-wdul

n=-w

< zkcka{ozo —]—“-'-—} [ rady%s (t-uyau
n=-o (1"' (ZW) )

—, depaed ] ol <o,

w0 e (1+ (s Ak

since f is bounded,lbnls Bin|, and for k > 1,

c
1K, (u - 53] < k ¢ ke, D)k
W WS G A k '(“"_121+(

It follows that the right hand side of (4.3.15) satisfies the condi-

tions leading to (4.3.16), and hence by letting vi0, we obtain

(4.3.17) (1) = ] fmK,(t - ) , ter! |

n=-o

which is the sampling theorem for a conventionally bandlimited func-

tion with compact spectrum.

Example 4.3.2. (Bandlimited functions in Lz(uk)). Let feLz(uk),
k 2 0 , be a continuous function. Then f determines a tempered dis-
tribution by (4.3.14). If its distributional Fourier transform %
has a compact support, then (4.3.4) applies and we have
Flx ) = E(e ) = £z

W W |
(see Lee, 1979). Since £ is a C™-function and |£(t)| s G (1+It)K,
for constant Ck > 0 (Lee, 1977), then (4.3.15) holds and following
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the arguments used in Example 4.3.1, we obtain (4.3.17) which is

similar to (3.2.3) and is identical to (3.2.4). It should be noted,
f' though, that (4.3.4) cannot be obtained from Campbell's result
(Theorem 3.2.4), since the convergence in (3.2.4) is not uniform

on compact sets.

4.4. Sampling Expansions for Random Distributions.

In this section sampling expansions for stationary random distri-

x butions are considered. Let X =" {X(¢), ¢S} be a second order random

distribution. X is said to be weakly stationary, if for every h > 0

and ¢,peS,

E(tX(6) 1, X(1)) = E(X(6) * X(¥)) .

If X is a weakly stationary random distribution (WSRD), then there j

exists a unique tempered distribution peS' such that for every ¢,yeS,
(4.4.1) R(6,¥) = E(X(4) « X(¥)) = o(¢#)) ,
where %(t) = P(-t) (Ita, 1954), and p has the spectral representation i

(4.4.2) o(¢) = [ $(w)du(u) , ¢S, 5

oo

1 where p is a non-negative measure on R! such that | iu—(l—zllE <o
k- - (1+u”)

for some integer k. In this case X is said to be of type k, and u :

. is called the spectral measure of X.

Let B* be the set of all Borel sets with finite u-measure. An
LZ(Q)-valued function Z defined on B* is called a random measure with

i respect to y if

s o
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E(Z(B))*Z(B,)) = u(B;nB,) , B,B,cB* .

Hence E(Z%(B)) = u(B), and Z(B;) 1 Z(B,) if B, and B, are disjoint.
Since u is c-additive, then Z(B) = X:=IZ(BH), whenever Bl’BZ""

are disjoint sets in B* with Un=1Bn = B, It follows by (4.4.1)

and (4.4.2) that there exists a random measure Z with respect to u

such that

X(¢) =/ $(udzZ(u) , ¢eS .

If H(X) is the linear subspace of LZ(Q) generated by {X(¢),0€S}, then
H(X) and Lz(u) are isometrically isomorphic under the correspondence

X(¢)1'—> &, ¢eS. A WSRD X is said to be W,-bandlimited, W, > 0, if
c, .
u{ ["wo,wol } = 0.

Theorem 4.4.1. (a) If X = {X(4), ¢eS} is a Wo-bandlimited WSRD,

W > WO, aeD and YeD[-W,W] with a(t) = 1 = y(t) on [-Wb,wo], then for
every ¢eS,

(4.4.3) X(9) = I X(t @) (r G,)(ns)
W W

in mean-square, where G (¢) = / E%%W%EEE ¢(t)dt.

(b) Let X = {X(¢), ¢S} be a WSRD with spectral measure u which
has compact support. Let the closed set E and W > 0 be such that
E 2 supp(n) and the translates {E+2nW} , n # 0, are disjoint from

supp(u). Let a and ¢ be any test functions such that y has support

E, and a(t) = 1 = y(t) on supp(u). Then
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(4.4.9) X(9) = ] X(r 0)(r K@) , ¢S,
= W W
in mean-square, where K,(t) = 2—%( / w(u)eZNitudu.

E

Proof. To prove (a), first let ¢eS be such that $ev[-w,w1.
Then ¢(u) = Z:=_m$(u+2nW) is a € -function which is periodic with
period 2W and has the Fourier series

izu

==

1 .. .n, " Rl
'QW d’('éW)e y U€ ’

(4.4.5) ou) = of
n=

which converges uniformly on r1. Since $eD[-W,W],

(t G (0 = [ BN g yar
W
Wiy

we have for the mean square error

N ~
ex(®) = E[X(o) - PRSFRICRION
W 2W

% . . BT
[ e - T egpe ¥l aw .
W5 n=-N
There exists a constant M > 0 such that for all N and ude,
N o u
~ 1 n W
[o(uw) - ] = d(mpe | s M.
ney W VLW
n

. N 1 n i w4 ~
Since, by (4.4.5), zn=-N W ¢(2—w)e converges to ¢(u) on

[-WO,WO] » by the dominated convergence theorem, eé(tb) +0as N+ «,
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Thus for every ¢ef)[-w,w1, we have

(4.4.6) X(9) = ] X(r @)t GI() .
e W W

Now for every ¢¢S and ¢ as in part (a) of the statement of

the theorem, we have

¥ %
X(¢) = [ $(wdz(w) = [ p(wé(w)dz(u)
-W -Wo
¥
(4.4.7) ‘{, (V%) "(W)dZ(u) = X(¥*¢) ,
0

\'
where (x¢ = (y3)"eD[-W,W], and (4.4.3) follows from (4.4.6) and (4.4.7).
The proof of part (b) is similar to that of (a) with the obvious modifi-

cation and hence is omitted. 0

It should be noted that, since a = 1 on [ -WO,WOJ,

N w0 ~mi %u
X(t o) = | e dZ(u) , nelN .
-W

W 0

If we define
w0
x(t) = [ e MWy | ter!,
-W
0

then {x(t), tch} is a weakly stationary Wo-bandlimited stochastic

process, X(t n&) = x(i% , and (4.4.3) reads
P

(4.4.8) X(#) = ] x(zp@, G)(Ia0) , ¢eS ,
n=-oco W
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i.e., the random distribution X is reconstructed using the samples
of the ordinary stochastic process x. Hence there is a one-to-one
correspondence between W,-bandlimited weakly stationary random dis-
tributions X and wo-bandlimited weakly stationary processes x deter-
mined by X(6) = [ 0(u)dz(u) and x(t) = fwoez“it“dZ(u) and satisfying
(4.4.8). o "o

We now show that the sampling theorem for bandlimited weakly

stationary random distributions includes as a particular case the

sampling theorem for bandlimited weakly stationary processes.

Example 4.4.1. Let x = {x(t), telRl} be a measurable, mean-square

continuous, weakly stationary process which is Wo-bandlimited, i.e.,
Yo .
(4.4.9) x(t) = [ e 2™ Wgz0y) |

0
where Z is a random measure with respect to the spectral measure u of

x with u{[ -Wg,Wy]°} = 0. Then x determines a Wy-bandlimited WSRD by
%
X(@) = [ $(wdzZ(w) , ¢S ,
-wo

which can also be written as
w

0 = s
ORIAY| e”2Mty () dt)dz (u)

[ x(©$(v)de ,

-0

where the latter integral exists both with probability one as well
as in quadratic mean. Then by (4.4.4) we have for each teR! and

v>0,




......

- ; — R

W bR

| 9
[ <] . [ -] n o0 ) n )
(4.4.10) -o{ x(u)¢, (t-u)du nz_wx(—zw) -o{ Ky(u - e, (t-u)du

in quadratic mean. As in Example 4.3.1,
[ x(uo (t-u)du + x(t) as WO

% in quadratic mean,_o{ Ky(u 0, (t wdu > K (t -ZW) as w0, and
= the right hand side of (4.4.10) converges in quadratic mean to
i 1 I XKt - o). We thus obtain
& x(t) = nz_mx(w)l(w(t -5 » teR
3 N in quadratic mean.
2

E
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